Когда векторы перпендикулярны формула. Скалярное произведение векторов

Инструкция

Если исходный вектор изображен на чертеже в прямоугольной двухмерной системе координат и перпендикулярный ему нужно построить там же, исходите из определения перпендикулярности векторов на плоскости. Оно гласит, что угол между такой парой направленных отрезков должен быть равен 90°. Таких векторов можно построить бесконечное . Поэтому начертите в любом удобном месте плоскости перпендикуляр к исходному вектору, отложите на нем отрезок, равный длине заданной упорядоченной пары точек и назначьте один из его концов началом перпендикулярного вектора. Сделайте это с помощью транспортира и линейки.

Если же исходный вектор задан двухмерными координатами ā = (X₁;Y₁), исходите из того, что скалярное произведение пары перпендикулярных векторов должно быть равно нулю. Это значит, что вам надо подобрать для искомого вектора ō = (X₂,Y₂) такие координаты, при которых будет выполняться равенство (ā,ō) = X₁*X₂ + Y₁*Y₂ = 0. Это можно сделать так: выберите любое ненулевое значение для координаты X₂, а координату Y₂ рассчитайте по формуле Y₂ = -(X₁*X₂)/Y₁. Например, для вектора ā = (15;5) будет вектор ō, с абсциссой, равной единице, и ординатой, равной -(15*1)/5 = -3, т.е. ō = (1;-3).

Для трехмерной и любой другой ортогональной системы координат верно то же самое необходимое и достаточное условие перпендикулярности векторов - их скалярное произведение должно быть равно нулю. Поэтому, если исходный направленный отрезок задан координатами ā = (X₁,Y₁,Z₁), подберите для перпендикулярной ему упорядоченной пары точек ō = (X₂,Y₂,Z₂) такие координаты, при которых выполняется условие (ā,ō) = X₁*X₂ + Y₁*Y₂ + Z₁*Z₂ = 0. Проще всего присвоить X₂ и Y₂ единичные значения, а Z₂ рассчитать из упростившегося равенства Z₂ = -1*(X₁*1 + Y₁*1)/Z₁ = -(X₁+Y₁)/Z₁. Например, для вектора ā = (3,5,4) эта приобретет такой вид: (ā,ō) = 3*X₂ + 5*Y₂ + 4*Z₂ = 0. Тогда абсциссу и ординату перпендикулярного вектора примите за единицу, а в этом случае будет равна -(3+5)/4 = -2.

Источники:

  • найти вектор если он перпендикулярный

Перпендикулярными называются вектора , угол между которыми составляет 90º. Перпендикулярные вектора строятся при помощи чертежных инструментов. Если известны их координаты, то проверить или найти перпендикулярность векторов можно аналитическими методами.

Вам понадобится

  • - транспортир;
  • - циркуль;
  • - линейка.

Инструкция

Установите его в точку начала вектора. Проведите окружность произвольным радиусом. Затем постройте две с центрами в точках, где первая окружность пересекла прямую, на которой лежит вектор. Радиусы этих окружностей должны быть равны между собой и больше первой построенной окружности. На точках пересечения окружностей постройте прямую, которая будет перпендикулярна исходному вектору в точке его начала, и отложите на ней вектор, перпендикулярный данному.

Найдите вектор, перпендикулярный тому, координаты которого и равны (x;y). Для этого найдите такую пару чисел (x1;y1), которая удовлетворяла бы равенству x x1+y y1=0. В этом случае вектор с координатами (x1;y1) будет перпендикулярен вектору с координатами (x;y).

ом. Для этого сначала введем понятие отрезка.

Определение 1

Отрезком будем называть такую часть прямой, которая ограничена точками с двух сторон.

Определение 2

Концами отрезка будем называть точки, которые его ограничивают.

Для введения определения вектора один из концов отрезка назовем его началом.

Определение 3

Вектором (направленным отрезком) будем называть такой отрезок, у которого обозначено, какая граничная точка его начало, а какая является его концом.

Обозначение: \overline{AB} - вектор AB , имеющий начало в точке A , а конец в точке B .

Иначе одной маленькой буквой: \overline{a} (рис. 1).

Определение 4

Нулевым вектором будем называть любую точку, которая принадлежит плоскости.

Обозначение: \overline{0} .

Введем теперь, непосредственно, определение коллинеарных векторов.

Также введем определение скалярного произведения, которое будет нам необходимо далее.

Определение 6

Скалярным произведением двух данных векторов будем называть такой скаляр (или число), который равняется произведению длин двух этих векторов с косинусом угла между данными векторами.

Математически это может выглядеть следующим образом:

\overline{α}\overline{β}=|\overline{α}||\overline{β}|cos⁡∠(\overline{α},\overline{β})

Скалярное произведение также можно найти с помощью координат векторов следующим образом

\overline{α}\overline{β}=α_1 β_1+α_2 β_2+α_3 β_3

Признак перпендикулярности через пропорциональность

Теорема 1

Чтобы ненулевые векторы были перпендикулярны между собой, необходимо и достаточно, чтобы их скалярное произведение этих векторов равнялось нулю.

Доказательство.

Необходимость: Пусть нам даны векторы \overline{α} и \overline{β} , которые имеют координаты (α_1,α_2,α_3) и (β_1,β_2,β_3) , соответственно, причем они перпендикулярны друг другу. Тогда нам нужно доказать следующее равенство

Так как векторы \overline{α} и \overline{β} перпендикулярны, то угол между ними равняется 90^0 . Найдем скалярное произведение данных векторов по формуле из определения 6.

\overline{α}\cdot \overline{β}=|\overline{α}||\overline{β}|cos⁡90^\circ =|\overline{α}||\overline{β}|\cdot 0=0

Достаточность: Пусть верно равенство \overline{α}\cdot \overline{β}=0 . Докажем, что векторы \overline{α} и \overline{β} будут перпендикулярны друг другу.

По определению 6, будет верно равенство

|\overline{α}||\overline{β}|cos⁡∠(\overline{α},\overline{β})=0

Cos⁡∠(\overline{α},\overline{β})=0

∠(\overline{α},\overline{β})=90^\circ

Следовательно, векторы \overline{α} и \overline{β} будут перпендикулярны друг другу.

Теорема доказана.

Пример 1

Доказать, что векторы с координатами (1,-5,2) и (2,1,3/2) перпендикулярны.

Доказательство.

Найдем скалярное произведение для этих векторов через формулу, данную выше

\overline{α}\cdot \overline{β}=1\cdot 2+(-5)\cdot 1+2\cdot \frac{3}{2}=2\cdot 5+3=0

Значит, по теореме 1, эти вектор перпендикулярны.

Нахождение перпендикулярного вектора к двум данным векторам через векторное произведение

Введем вначале понятие векторного произведения.

Определение 7

Векторным произведением двух векторов будем называть такой вектор, который будет перпендикулярен обоим данным векторам, и его длина будет равняться произведению длин этих векторов с синусом угла между данными векторами, а также этот вектор с двумя начальными имеют туже ориентацию, как и декартова система координат.

Обозначение: \overline{α}х\overline{β} х .

Чтобы найти векторное произведение, будем пользоваться формулой

\overline{α}х\overline{β}=\begin{vmatrix}\overline{i}&\overline{j}&\overline{k}\\α_1&α_2&α_3\\β_1&β_2&β_3\end{vmatrix} х

Так как вектор векторного произведения двух векторов перпендикулярен обоим этим векторам, то он и будет иском вектором. То есть, для того, чтоб найти перпендикулярный для двух векторов вектор, нужно просто найти их векторное произведение.

Пример 2

Найти вектор, перпендикулярный к векторам с координатами \overline{α}=(1,2,3) и \overline{β}=(-1,0,3)

Найдем векторное произведение данных векторов.

\overline{α}х\overline{β}=\begin{vmatrix}\overline{i}&\overline{j}&\overline{k}\\1&2&3\\-1&0&3\end{vmatrix}=(6-0)\overline{i}-(3+3)\overline{j}+(0+2)\overline{k}=6\overline{i}-6\overline{j}+2\overline{k}=(6,6,2) х

Данная статья раскрывает смысл перпендикулярности двух векторов на плоскости в трехмерном пространстве и нахождение координат вектора, перпендикулярному одному или целой паре векторов. Тема применима для задач, связанных с уравнениями прямых и плоскостей.

Мы рассмотрим необходимое и достаточное условие перпендикулярности двух векторов, решим по методу нахождения вектора, перпендикулярному заданному, затронем ситуации по отысканию вектора, который перпендикулярен двум векторам.

Yandex.RTB R-A-339285-1

Необходимое и достаточное условие перпендикулярности двух векторов

Применим правило о перпендикулярных векторах на плоскости и в трехмерном пространстве.

Определение 1

При условии значения угла между двумя ненулевыми векторами равным 90 ° (π 2 радиан) называют перпендикулярными .

Что это значит, и в каких ситуациях необходимо знать про их перпендикулярность?

Установление перпендикулярности возможно через чертеж. При отложении вектора на плоскости от заданных точек можно геометрически измерить угол между ними. Перпендикулярность векторов если и будет установлена, то не совсем точно. Чаще всего данные задачи не позволяют делать это при помощи транспортира, поэтому данный метод применим только в случае, когда ничего больше о векторах неизвестно.

Большинство случаев доказательства перпендикулярности двух ненулевых векторов на плоскости или в пространстве производится с помощью необходимого и достаточного условия перпендикулярности двух векторов .

Теорема 1

Скалярное произведение двух ненулевых векторов a → и b → равном нулю для выполнения равенства a → , b → = 0 достаточно для их перпендикулярности.

Доказательство 1

Пусть заданные векторы a → и b → перпендикулярны, тогда выполним доказательство равенства a ⇀ , b → = 0 .

Из определения про скалярное произведение векторов мы знаем, что оно равняется произведению длин заданных векторов на косинус угла между ними. По условию a → и b → перпендикулярны, а, значит, исходя из определения, угол между ними 90 ° . Тогда имеем a → , b → = a → · b → · cos (a → , b → ^) = a → · b → · cos 90 ° = 0 .

Вторая часть доказательства

При условии, когда a ⇀ , b → = 0 доказать перпендикулярность a → и b → .

По сути доказательство является обратным предыдущему. Известно, что a → и b → ненулевые, значит, из равенства a ⇀ , b → = a → · b → · cos (a → , b →) ^ найдем косинус. Тогда получим cos (a → , b →) ^ = (a → , b →) a → · b → = 0 a → · b → = 0 . Так как косинус равен нулю, можем сделать вывод, что угол a → , b → ^ векторов a → и b → равен 90 ° . По определению это и есть необходимое и достаточное свойство.

Условие перпендикулярности на координатной плоскости

Раздел скалярного произведения в координатах демонстрирует неравенство (a → , b →) = a x · b x + a y · b y , справедливое для векторов с координатами a → = (a x , a y) и b → = (b x , b y) , на плоскости и (a → , b →) = a x · b x + a y · b y для векторов a → = (a x , a y , a z) и b → = (b x , b y , b z) в пространстве. Необходимым и достаточным условием перпендикулярности двух векторов в координатной плоскости имеет вид a x · b x + a y · b y = 0 , для трехмерного пространства a x · b x + a y · b y + a z · b z = 0 .

Применим на практике и рассмотрим на примерах.

Пример 1

Проверить свойство перпендикулярности двух векторов a → = (2 , - 3) , b → = (- 6 , - 4) .

Решение

Для решения данной задачи необходимо найти скалярное произведение. Если по условию оно будет равным нулю, значит, они перпендикулярны.

(a → , b →) = a x · b x + a y · b y = 2 · (- 6) + (- 3) · (- 4) = 0 . Условие выполнено, значит, заданные векторы перпендикулярны на плоскости.

Ответ: да, заданные векторы a → и b → перпендикулярны.

Пример 2

Даны координатные векторы i → , j → , k → . Проверить, могут ли векторы i → - j → и i → + 2 · j → + 2 · k → быть перпендикулярными.

Решение

Для того, чтобы вспомнить, как определяются координаты вектора, нужно прочитать статью про координаты вектора в прямоугольной системе координат. Таким образом получаем, что у заданных векторов i → - j → и i → + 2 · j → + 2 · k → имеются соответствующие координаты (1 , - 1 , 0) и (1 , 2 , 2) . Подставляем числовые значения и получаем: i → + 2 · j → + 2 · k → , i → - j → = 1 · 1 + (- 1) · 2 + 0 · 2 = - 1 .

Выражение не равно нулю, (i → + 2 · j → + 2 · k → , i → - j →) ≠ 0 , а это означает, что векторы i → - j → и i → + 2 · j → + 2 · k → не перпендикулярны, так как условие не выполнилось.

Ответ: нет, векторы i → - j → и i → + 2 · j → + 2 · k → не перпендикулярны.

Пример 3

Даны векторы a → = (1 , 0 , - 2) и b → = (λ , 5 , 1) . Найти значение λ , при котором данные векторы перпендикулярны.

Решение

Используем условие перпендикулярности двух векторов в пространстве в квадратной форме, тогда получим

a x · b x + a y · b y + a z · b z = 0 ⇔ 1 · λ + 0 · 5 + (- 2) · 1 = 0 ⇔ λ = 2

Ответ: векторы перпендикулярны при значении λ = 2 .

Имеются случаи, когда вопрос о перпендикулярности невозможен даже при необходимом и достаточном условии. При известных данных о трех сторонах треугольника на двух векторах, возможно, найти угол между векторами и проверить его.

Пример 4

Дан треугольник А В С со сторонами А В = 8 , А С = 6 , В С = 10 см. проверить на перпендикулярность векторы A B → и A C → .

Решение

При перпендикулярности векторов A B → и A C → треугольник A B C считается прямоугольным. Тогда применим теорему Пифагора, где В С – гипотенуза треугольника. Равенство B C 2 = A B 2 + A C 2 должно выполниться. Отсюда следует, что 10 2 = 8 2 + 6 2 ⇔ 100 = 100 . Значит, А В и А С являются катетами треугольника А В С, следовательно, A B → и A C → перпендикулярны.

Важно научиться находить координаты вектора, перпендикулярного заданному. Это возможно как на плоскости, так и в пространстве при условии перпендикулярности векторов.

Нахождение вектора, перпендикулярного данному в плоскости.

Ненулевой вектор a → может иметь бесконечное количество перпендикулярных векторов на плоскости. Изобразим это на координатной прямой.

Задан ненулевой вектор a → , лежащий на прямой а. Тогда заданный b → , расположенный на любой прямой, перпендикулярной прямой а, становится перпендикулярным и a → . Если вектору i → перпендикулярен вектор j → или любой из векторов λ · j → при λ равной любому действительному числу кроме нуля, то нахождение координат вектора b → , перпендикулярному a → = (a x , a y) , сводится к бесконечному множеству решений. Но необходимо найти координаты вектора, перпендикулярного a → = (a x , a y) . Для этого необходимо записать условие перпендикулярности векторов в такой форме a x · b x + a y · b y = 0 . Имеем b x и b y , являющиеся искомыми координатами перпендикулярного вектора. Когда a x ≠ 0 , значение b y является ненулевым, а b x вычислим из неравенства a x · b x + a y · b y = 0 ⇔ b x = - a y · b y a x . При a x = 0 и a y ≠ 0 присваиваем b x любое значение кроме нуля, а b y находим из выражения b y = - a x · b x a y .

Пример 5

Дан вектор с координатами a → = (- 2 , 2) . Найти перпендикулярный данному вектор.

Решение

Обозначим искомый вектор как b → (b x , b y) . Найти его координаты можно из условия перпендикулярности векторов a → и b → . Тогда получим: (a → , b →) = a x · b x + a y · b y = - 2 · b x + 2 · b y = 0 . Присвоим b y = 1 и подставим: - 2 · b x + 2 · b y = 0 ⇔ - 2 · b x + 2 = 0 . Отсюда из формулы получим b x = - 2 - 2 = 1 2 . Значит, вектор b → = (1 2 , 1) является вектором, перпендикулярным a → .

Ответ: b → = (1 2 , 1) .

Если ставится вопрос о трехмерном пространстве, задача решается по такому же принципу. При заданном векторе a → = (a x , a y , a z) существует бесконечное множество перпендикулярных векторов. Зафиксирует это на координатной трехмерной плоскости. Дана a → , лежащая на прямой a . Перпендикулярную прямой a плоскость обозначаем α . В этом случае любой ненулевой вектор b → из плоскости α перпендикулярен a → .

Необходимо найти координаты b → , перпендикулярного ненулевому вектору a → = (a x , a y , a z) .

Пусть задан b → с координатами b x , b y и b z . Чтобы найти их, необходимо применить определение условия перпендикулярности двух векторов. Равенство a x · b x + a y · b y + a z · b z = 0 должно выполняться. Из условия a → - ненулевой, значит, одна из координат имеет значение не равное нулю. Предположим, что a x ≠ 0 , (a y ≠ 0 или a z ≠ 0). Следовательно, имеем право разделить на эту координату все неравенство a x · b x + a y · b y + a z · b z = 0 , получим выражение b x + a y · b y + a z · b z a x = 0 ⇔ b x = - a y · b y + a z · b z a x . Присваиваем координатам b y и b x любое значение, вычисляем значение b x , исходя из формулы, b x = - a y · b y + a z · b z a x . Искомый перпендикулярный вектор будет иметь значение a → = (a x , a y , a z) .

Рассмотрим доказательство на примере.

Пример 6

Дан вектор с координатами a → = (1 , 2 , 3)   . Найти вектор, перпендикулярный данному.

Решение

Обозначим искомый вектор за b → = (b x , b y , b z) . Исходя из условия о перпендикулярности векторов, скалярное произведение должно быть равным нулю.

a ⇀ , b ⇀ = 0 ⇔ a x · b x + a y · b y + a z · b z = 0 ⇔ 1 · b x + 2 · b y + 3 · b z = 0 ⇔ b x = - (2 · b y + 3 · b z)

Если значение b y = 1 , b z = 1 , тогда b x = - 2 · b y - 3 · b z = - (2 · 1 + 3 · 1) = - 5 . Отсюда следует, что координаты вектора b → (- 5 , 1 , 1) . Вектор b → является одним из перпендикулярных векторов заданному.

Ответ: b → = (- 5 , 1 , 1) .

Нахождение координат вектора, перпендикулярного двум заданным векторам

Нужно найти координаты вектора в трехмерном пространстве. Он перпендикулярен не коллинеаренным векторам a → (a x , a y , a z) и b → = (b x , b y , b z) . При условии коллинеарности векторов a → и b → в задаче достаточно будет найти вектор, перпендикулярный a → или b → .

При решении применяется понятие векторного произведения векторов.

Векторным произведением векторов a → и b → называют вектор, одновременно перпендикулярный и a → и b → . Для решения данной задачи применяется векторное произведение a → × b → . Для трехмерного пространства имеет вид a → × b → = a → j → k → a x a y a z b x b y b z

Разберем подробнее векторное произведение на примере задачи.

Пример 7

Заданы векторы b → = (0 , 2 , 3) и a → = (2 , 1 , 0) . Найти координаты любого перпендикулярного вектора данным одновременно.

Решение

Для решения необходимо найти векторное произведение векторов. (Необходимо обратиться к пункту вычисления определителя матрицы для нахождения вектора). Получим:

a → × b → = i → j → k → 2 1 0 0 2 3 = i → · 1 · 3 + j → · 0 · 0 + k → · 2 · 2 - k → · 1 · 0 - j → · 2 · 3 - i → · 0 · 2 = 3 · i → + (- 6) · j → + 4 · k →

Ответ: (3 , - 6 , 4) - координаты вектора, одновременно перпендикулярного заданным a → и b → .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter