Проблемы безопасности техносферы риск аварий и катастроф. Риски техносферы и их анализ

Введение

4 Введение

Риск возникновения техногенных катастроф и аварий и масштабы их последствий напрямую зависят от интенсификации производства, роста энергетической мощности единичных производственных объектов , своевременности обновления технологий и оборудования, обостряющихся противоречий между темпами прогресса и уровнем знаний специалистов и обслуживающего персонала. Все эти факторы и тенденции, объективно определяющие состояние безопасности промышленных производств, следует рассматривать как важнейшие предпосылки негативного влияния техносферы на окружающую среду и человека, причем влияния не естественного (при нормальном режиме эксплуатации производств и объектов), а в результате возникновения экстремальных ситуаций - техногенных катастроф и аварий.

В экономически развитых странах вопросам безопасности промышленного комплекса уделяется особое внимание. Этот комплекс определяет, с одной стороны, уровень технического прогресса и индустриального потенциала государства, а с другой стороны - увеличивает риск возникновения техногенных угроз, связанных с созданием и функционированием потенциально опасных объектов промышленности. По данным ООН ежегодный ущерб, наносимый мировой экономике техногенными катастрофами и авариями, за последние 30 лет увеличился в три раза и достиг 200 млрд. долл. США .

В России проблема обеспечения безопасности промышленного комплекса особенно обострилась к концу XX века в результате децентрализации государственного управления промышленностью, ликвидации отраслевых структур управления в промышленности и возникновения предприятий различных форм собственности, а также необходимости поддержания в рабочем состоянии большого числа изношенного оборудования, выход из строя которого может привести к авариям и несчастным случаям .


Объективным фактором, отражающим состояние промышленной безопасности опасных производственных объектов, являются показатели аварийности и травматизма. Федеральный горный и промышленный надзор России (Госгортехнадзор России), являясь федеральным органом исполнительной власти, специально уполномоченным в области промышленной безопасности, осуществляет государственный надзор за опасными производственными объектами в различных отраслях экономики Российской Федерации1. В ежегодных докладах Госгортехнадзора России Правительству Российской Федерации «О состоянии промышленной безопасности опасных производственных объектов, рационального использования и охраны недр Российской Федерации» дается оценка состояния промышленной безопасности на опасных производственных объектах.

Материальный ущерб от произошедших в 2003 году 213 аварий составил (без учета ущерба для окружающей природной среды, затрат на ликвидацию последствий аварий, упущенной выгоды) более 900 млн. руб. В 2003 году общее число погибших при осуществлении производственной деятельности на опасных производственных объектах составило 379 человек, произошло 63 групповых несчастных случая, в которых пострадало 203 человека, погибло 77 человек . Динамика аварийности и смертельного травматизма за последние 10 лет представлена на рис.1.

1 Указами Президента Российской Федерации от 9.03.2004 года № 000 и от 01.01.2001 года № 000 Госгортехнадзор России преобразован в Федеральную службу по экологическому, технологическому и атомному надзору. В настоящей работе используется старое наименование.

I Смертельно травмировано, чел Ф Число аварий

Рис. 1 .Динамика аварийности и смертельного травматизма

на предприятиях, поднадзорных Госгортехнадзору

России, за года

Причины аварийности и травматизма можно разделить на две группы: технические и организационные. К техническим причинам относятся неудовлетворительное техническое состояние зданий и сооружений, неисправность технических устройств, а также средств противоавариинои защиты и сигнализации, недостаточная изученность технологических процессов, несоответствие проектных решений условиям производства работ, конструктивное несовершенство технических устройств, отсутствие противоавариинои защиты и сигнализации, в том числе автоматизации опасных операций, механизации трудоемких работ. К организационным причинам относятся отступление при ведении работ от проектной (технологической) документации, нарушение регламентов обслуживания технических устройств и ремонтных работ , неэффективность организации и осуществления производственного контроля, неправильная организация производства работ, низкий уровень знаний требований промышленной безопасности, нарушение производственной дисциплины, неосторожные (несанкционированные) действия исполнителей работ, умышленное отключение средств защиты и сигнализации. По данным Государственного доклада о состоянии промышленной безопасности в 2003 году в структуре обобщенных причин

аварий и травматизма на опасных производственных объектах на долю технических причин приходится 29% (аварии) и 23,5% (смертельный травматизм). Соответственно, на долю организационных причин аварий и смертельного травматизма приходится 71% и 76,5%.


Системы газораспределения и газопотребления в соответствии с Федеральным законом «О промышленной безопасности опасных производственных объектов» относятся к опасным производственным объектам по признакам использования на них горючих веществ и оборудования, работающего под давлением свыше 0,07 МПа и при температуре нагрева воды свыше 115 С. Разработке рекомендаций по повышению уровня промышленной безопасности на них за счет повышения качества услуг в этой области посвящено настоящее исследование.

В системе газораспределения и газопотребления Российской Федерации протяженность наружных газопроводов составляет около 400 тыс. км, в том числе свыше 330 тыс. км подземных газопроводов. Число поднадзорных Госгортехнадзору России организаций составляет около 45 тыс., в том числе 20 тыс. промышленных предприятий, около 400 тепловых электростанций, свыше 40 тыс. газовых отопительных и производственных котельных.

Всего производственных газифицированных объектов около 600 тыс. Большая часть из них представляет газовое оборудование газорегуляторных пунктов и установок, а также теплогенерирующее газоиспользующее оборудование.

В 2003 году при эксплуатации систем газораспределения и газопотребления произошло 33 аварии и 9 несчастных случаев со смертельным исходом. Экономический ущерб (в виде прямых потерь) от аварий в 2003 году составил более 17 млн. руб. По характеру происшедших аварий они распределились по следующим факторам: механическое повреждение наружных газопроводов при производстве земляных работ в зоне прокладки подземных газопроводов; повреждения подземных газопроводов, вызванные потерей прочности сварных стыков; взрывы при розжиге котлов; коррозионные

повреждения газопроводов; природные явления. Причинами смертельного травматизма при эксплуатации систем газораспределения и газопотребления являются: отравления продуктами неполного сгорания газа, вследствие отсутствия или несрабатывания сигнализаторов загазованности по окиси углерода, а также несоблюдение мер безопасности при производстве газоопасных работ.

Расследование причин аварий и смертельного травматизма на опасных производственных объектах газораспределения и газопотребления, также, как и на других опасных производственных объектах, показало, что основными причинами являются организационные: производство несанкционированных работ в охранной зоне наружных газопроводов, слабая проработка планов производства работ, низкий уровень производственной и технологической дисциплины, нарушения требований производственных инструкций из-за незнания персоналом этих документов, отсутствие практических навыков, халатность. Динамика аварийности и травматизма на производстве со смертельным исходом на объектах газораспределения и газопотребления представлена на рис.2.

« 250 __** ^^ 37 Л 35 S

л | | 200 ^i ^зо 1

i 2.150- "?. 9,5 ,9 о

g 100 (О см ю см> 15 «I

z X 1 г--" -1 к -j \^ у 9 я Ю В

i i Протяженность подземных газопроводов, тыс. кги > Количество аварий

""¦^-Смертельно травмировано, чел.

Рис.2. Динамика протяженности подземных газопроводов, травматизма со смертельным исходом и аварийности в газовом хозяйстве

Еще одним определяющим фактором, влияющим на уровень аварийности при эксплуатации систем газораспределения и газопотребления, является то обстоятельство, что около 10,6 тыс. км газопроводов отработали нормативный срок эксплуатации, равный 40 годам.

Коренная причина высокой производственной аварийности - ослабление управления безопасностью. Чтобы преодолеть это, необходимо придать управлению безопасностью превентивный характер, профилактическую направленность и последовательно внедрять элементы управления безопасностью на всех уровнях, начиная с государственного уровня и заканчивая уровнем опасного производственного объекта.

Управление промышленной безопасностью должно носить системный характер, об этом начали говорить еще с конца 80-х годов прошлого века . В статье и схематично представлена структура системы управления промышленной безопасностью. Она складывается из следующих составляющих:

Нормативно-правовой;

Социально-политической;

Экономической;

Информационной;

Технической;

Организационной.

Во всякой системе пренебрежение любым ее элементом делает ее неполной. Если в структуре системы есть элемент, который не влияет на ее поведение в целом, не реализует ни одну из целей ее функционирования, то это является верным признаком ненужности элемента .

Нормативно-правовая составляющая системы играет чрезвычайно важную роль, поскольку она определяет механизмы регулирования всех остальных составляющих и устанавливает методы регулирования в данной области. Разработке этой составляющей в последние 1,5 десятилетия уделялось достаточно внимания: создана правовая база промышленной безопасности,

усовершенствована в 2003 году нормативно-техническая база по промышленной безопасности. В настоящее время проводятся исследования по формированию системы технического регулирования в этой области.

Реализация установленных методов регулирования происходит за счет других составляющих системы. Роль каждой из составляющих системы может стать предметом самостоятельного исследования.

Техническая составляющая включает в себя:

Выбор процесса технологии;

Материалы;

Аппаратурное оформление;

Системы защиты;

Экспертизу промышленной безопасности;

Проектирование;

Размещение объекта;

Строительство;

Эксплуатацию;

Износ оборудования (мониторинг, ремонт, остаточный ресурс и др.). Организационная составляющая включает в себя:

Разрешительная деятельность (лицензирование, разрешения на применение);

Декларирование безопасности;

Надзор и контроль;

Обучение, подготовка и аттестация работников по промышленной безопасности;

Процедура аккредитации лежит в основе Системы экспертизы промышленной безопасности (СЭПБ) и направлена на совершенствование экспертной деятельности в области промышленной безопасности; оценки полноты и качества работ, выполненных экспертными организациями; развития между ними конкурентной борьбы; содействия заказчикам в компетентном выборе экспертных организаций. Она представляет собой совокупность взаимозависимых функций участников экспертизы промышленной безопасности. Деятельность их основана на нормах, правилах, методиках, условиях, критериях и процедурах, в соответствии с которыми и осуществляется экспертиза.

В рамках этой системы контроль за деятельностью экспертных организаций осуществляется Наблюдательным и Консультативным советами, а также Координирующим органом, отраслевыми и другими комиссиями СЭПБ.

В настоящее время СЭПБ реформируется в целях ее гармонизации с международными системами аккредитации. Экспертные организации (ЭО) проходят аккредитацию, в качестве одного из типов органов оценки соответствия (ООС). К другим органам оценки соответствия относятся: независимые организации по аттестации экспертов (НОА), независимые органы по аттестации персонала неразрушающего контроля (НОАЛ), лаборатории неразрушающего контроля (ЛНК) и независимые учебные центры (НУЦ), которые в свою очередь разделяются на организации по подготовке (ОП) и организации, занимающиеся обучением рабочих основных профессий промышленных производств (OOP).

В настоящей работе приведены результаты исследований, проводимых на базе НПО "Техкранэнерго", которая прошла аккредитацию в качестве ЭО, НО А, ЛНК и НУЦ.

В данной главе рассмотрены результаты деятельности НПО "Техкранэнерго" в качестве ЭО. На основании накопленного опыта по проведению экспертизы промышленной безопасности разработаны рекомендации по повышению эффективности и качества работ экспертных организаций.

При участии автора проведены работы по экспертизе промышленной безопасности проектной документации на строительство, расширение, реконструкцию, техническое перевооружение, консервацию и ликвидацию опасных производственных объектов газораспределения и газопотребления, технических устройств, применяемых на этих объектах, а также зданий и сооружений:

Наружных газопроводов городов, населенных пунктов (включая межпоселковые);

Газорегуляторных пунктов и установок;

Газопроводов и газового оборудования промышленных и сельскохозяйственных производств, использующих природные и сжиженные углеводородные газы в качестве топлива;

Газонаполнительных станций и пунктов;

Автомобильных газозаправочных станций.

Большой экспериментальный материал накоплен по результатам проведения технического диагностирования (ТД) оборудования и газопроводов газорегуляторных пунктов (ГРП) и газорегуляторных установок (ГРУ). Всего обследовано 760 объектов.

1.2. Диагностика как способов продления срока безопасной эксплуатации газорегуляторных пунктов и газорегуляторных установок

Уровень промышленной безопасности опасных производственных объек-

Список литературы

Техногенная деятельность человека рассматривается как гигантская система преобразования, объектом преобразования которой является планета Земля. Если под средой обитания человека понимать окружающую его природную среду и системы, созданные самим человеком, то в географической оболочке Земли необходимо учитывать техносферу. Задачи оптимизации природопользования и охраны окружающей среды невозможно разрешить без учета техногенной безопасности техносферы.

Существует два подхода в рассмотрении категории «техногенная безопасность»:

а) в системе «человек – производство – среда обитания»;

б) в системе «общество – техносфера – природная среда».

Техногенная безопасность (ТБ) – совокупность свойств технических средств (оборудования, технологий, процессов) противостоять совместному воздействию всех факторов, приводящих к ухудшению состояния здоровья, травмам или гибели персонала, а также вредному воздействию на природную среду.

Существуют два пути обеспечения ТБ.

Во-первых, это предотвращение нарушений нормальных режимов работы, защита от вредного воздействия эксплуатационных нагрузок предотвращение отказов и сбоев в работе операторов.

Во-вторых, предотвращение опасного развития уже возникших нарушений нормальных режимов функционирования, исключение случаев перерастания таких нарушений в аварийные и катастрофические ситуации для человека и природной среды.

При глобальном подходе сфера техногенных опасностей разделяется на три показателя техногенных рисков или три типа:

1) угроза жизни и здоровью вследствие аварий, вплоть до глобальной катастрофы;

2) угроза жизни и здоровью вследствие деформации составляющих компонент биосферы;

3) угроза жизни и здоровью людей из-за недостатка природных ресурсов, вплоть до глобального их исчерпания.

Источником материальных, а также значительной части энергетических ресурсов является литосфера. Она одновременно и объект воздействия для таких ведущих отраслей как химическая, нефтехимическая и нефтеперерабатывающая, горно-металлургическая и топливно-энергетическая отрасли мирового хозяйства. Эти же отрасли являются и основными «вредителями» окружающей среды в промышленно развитых регионах. Главное здесь: минимизация получения отходов; утилизация и реутилизация отходов, выбросов, сбросов, т.е. обеспечение замкнутого по материалам и энергии производства; утилизация отходов, которые уже накоплены; изоляция и безопасное хранение токсичных и радиоактивных отходов. Государственное регулирование и управление техногенной безопасностью, техногенное программирование. Техногенная безопасность должна быть органически встроена в социально-экономическую систему государства.

Основные проблемы с обеспечением безопасности техносферы возникают при эксплуатации, так называемых критических систем, к которым относятся энергетические системы (особенно атомные), транспортные системы, системы связи, военно-технические системы, финансовые системы, медицинская и биологическая промышленность, экологически опасные производства, системы управления государством, в особенности силовыми структурами, и ряд других.

Критериями безопасности техносферы являются ограничения, вводимые на концентрации веществ, и потоки энергий в жизненном пространстве (предельно допустимые концентрации и уровни – ПДК и ПДУ).

В тех случаях, когда потоки масс и/или энергий от источника негативного воздействия в среду обитания могут нарастать стремительно и достигать чрезмерно высоких значений (например, при чрезвычайных техногенных ситуациях), в качестве критерия безопасности принимают допустимую вероятность (риск) возникновения травмирующего воздействия в зоне пребывания человека.

Происшествие наступает при появлении полного набора факторов его возникновения. Чем больше появилось предпосылок к происшествию и чем более они существенны, тем выше риск.

Потенциальная опасность объектов техносферы проявляется в случае их аварий. Исходными событиями аварий являются аварийные ситуации – это сочетание условий и обстоятельств, создающих аварийные воздействия на объекты. Источники опасности могут быть внутренними и внешними .

Внутренние источники – низкая надежность оборудования и персонала:

Отказы технических устройств, влияющих на безопасность;

Ошибочные действия персонала;

Человеческий фактор;

Пожары и др.

Внешними источниками опасности для объектов техносферы являются:

Окружающая природная среда;

Другие объекты техносферы;

Само общество.

Виды и параметры аварийных воздействий на потенциально-опасные объекты при их эксплуатации определяются с помощью специально разрабатываемых моделей аварийных ситуаций с ними.

Основные элементы системы анализа техногенного риска приведены на рис. 3.15.

В зависимости от масштаба последствий различают инцидент, аварию и катастрофу.

Инцидент :

Отказ или повреждение технических устройств на опасном объекте;

Отклонение от технологического процесса;

Нарушение положений нормативных правовых документов.

Аварией считают происшествие, в результате которого повреждена или разрушена техника, без гибели людей.

Крупная авария, повлекшая за собой человеческие жертвы, значительный материальный ущерб и другие тяжелые последствия, считаются катастрофой .


Рис. 3.15. Элементы системы анализа техногенного риска


Контрольные вопросы

1. Причины интереса к науке о риске в конце XX века

2. Задачи управления риском (рис. 3.1)

3. Объекты исследования риска (рис.3.2)

4. Допустимый или приемлемый риск

5. Классификация рисков по степени влияния на жизнедеятельность человека

6. Классификация рисков по объекту

7. Классификация рисков по местоположению источника опасностей

8. Классификация рисков по субъекту (источнику)

9. Классификация рисков по причине возникновения

10. Классификация рисков по возможности страхования

11. Принцип светофора (рис. 3.4)

12. Кривые Фармера (рис. 3.5)

13. Принцип ALARA (рис. 3.6)

14. Состав антропосферы

15. Человек как объект и субъект безопасности (рис. 3.7)

16. Безопасность объектов техносферы (рис. 3.8)

17. Задача обеспечения безопасности организации и источники опасности

18. Безопасность государства (рис. 3.10)

19. Риск как реализация опасности, два его свойства

20. Риск, как возможность реализации редких событий

21. Показатель риска технократической концепции

22. Индивидуальный риск (рис. 3.12)

23. Социальный риск – допустимый, пренебрежимый

24. Качественное описание характеристик последствий аварий – уровень последствий (табл. 3.1)

25. Количественное описание характеристик реализуемости рисков – уровень реализуемости (табл. 3.2)

26. Матрица качественно-количественных характеристик риска (табл. 3.3)

27. Качественное описание характеристик риска - пять категорий (табл.3.4)

28. Виды анализа риска

29. Идентификация, оценка и прогноз риска

30. Методы анализа риска (рис. 3.14)

31. Методики оценки и прогноза риска (табл. 3.5)

32. Внутренние и внешние источники опасностей техносферы

33. Элементы системы анализа техногенного риска (рис. 3.15)

34. Инцидент, авария, катастрофа?


4. СТРУКТУРЫ Системы управления рисками

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-1.jpg" alt=">Опасности и риски техносферы ">

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-2.jpg" alt="> Таксономия опасностей Различают опасности естественного (природного), техногенного и антропогенного"> Таксономия опасностей Различают опасности естественного (природного), техногенного и антропогенного происхождения. По видам потоков в жизненном пространстве: массовые; энергетические; информационные. По интенсивности потоков: опасные; чрезвычайно опасные. По длительности воздействия: постоянные, переменные (периодические), импульсные. По видам зоны воздействия: производственные, бытовые, городские, зоны ЧС. По размерам: локальные, региональные, межрегиональные, глобальные. По степени завершенности: потенциальные, реализованные.

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-3.jpg" alt="> Опасность в техносфере Пространство б (внешняя среда) "> Опасность в техносфере Пространство б (внешняя среда) Пространство а Основные положения понятия «опасность»: (система, в которой находится объект) опасность возникла вместе с возникновением объекта ее воздействия и будет существовать до существования объекта воздействия; объект опасность представляет собой недопустимые для воздействия восприятия объектом воздействия потоки вещества, энергии и информации, которые приводят к его изменению до деградации или полного разрушения данного объекта. Особенности воздействия опасности на объекты (системы) техносферы: -объект воздействия относительно стабилен в пространстве а; -объект пронизывают приходящие из пространства б и проходящие через пространство а потоки, несущие опасность или представляющие сами по себе опасность для данного объекта. Если потоки не приносят вреда и не причиняют ущерба объекту воздействия (восприятия потока), а лишь стимулируют активизацию или не мешают проходящим в объекте процессам, то такие потоки являются допустимыми. При нанесении вреда или причинении ущерба объекту воздействия (восприятия) потоки, проходящие или воздействующие на объект, являются недопустимыми или опасными, при этом максимальные значения потоков (величины воздействия), при которых ущерб не возникает (вред не причиняется), называются предельно допустимыми и характеризуются нормативами допустимого воздействия.

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-4.jpg" alt="> Техногенные опасности (ТО) – это совокупность вредных и травмирующих факторов техносферы, отрицательно воздействующих"> Техногенные опасности (ТО) – это совокупность вредных и травмирующих факторов техносферы, отрицательно воздействующих на человека и окружающую его среду. Источниками ТО являются элементы техносферы, деятельность которых сопровождается выбросами и сбросами загрязнителей, образованием твердых отходов, генерированием энергетических полей и излучений. Антропогенные опасности (АО) возникают в результате ошибочных или несанкционированных действий человека или групп людей. В системе «человек-опасность» человек может выполнять следующие три роли: быть «объектом защиты» , «средством защиты» и «источником опасности» . Потоки масс веществ, энергий и информации – основа сохранения жизни. «Жизнь осуществляется путем движения через живой организм потоков вещества, энергии и информации» - закон Ю. Н. Куражковского. Опасности реализуются в виде потоков энергии, вещества и информации, они существуют в пространстве и во времени. Опасности возникают, если повседневные потоки вещества, энергии и информации в техносфере превышают пороговые значения.

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-5.jpg" alt="> Основные виды потоков вещества и энергии 1. Потоки в"> Основные виды потоков вещества и энергии 1. Потоки в естественной природной среде: солнечное излучение, излучение звезд и планет; космические лучи, пыль, астероиды; электрическое и магнитное поле Земли; круговороты веществ в природных сферах (биосфере, экосистемах, биогеоценозах); потоки, связанные с атмосферными, гидросферными, литосферными явлениями, в том числе с опасными природными и стихийными явлениями. 2. Потоки в техносфере: потоки сырья, энергии; потоки продукции отраслей экономики; отходы экономики (производства и потребления); информационные потоки; транспортные потоки; световые потоки (искусственное освещение); потоки при техногенных авариях. 3. Потоки в социальной сфере: информационные потоки (обучение, государственное управление, сотрудничество); людские потоки (демографические, урбанизация). 4. Потоки, потребляемые и выделяемые человеком в процессе жизнедеятельности: потоки кислорода, воды, пищи и иных веществ; потоки энергии (механической, тепловой, солнечной); потоки информации; потоки отходов процесса жизнедеятельности. Потоки энергии, вещества и информации, необходимые для жизнедеятельности и существования жизни, при превышении допустимых уровней для восприятия объектом воздействия вызывают в объекте необратимые изменения, приводящие к его изменению, деградации, разрушению и гибели.

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-6.jpg" alt="> источник опасности источник "> источник опасности источник опасности поле опасностей объект защиты объект воздействия источник опасности Возникновение опасности зависит от степени стабильности системы и процессов, происходящих в системе. Процессы, происходящие в системе, подразделяются на: равновесные (обратимые); неравновесные (приводящие к изменениям в системе. Равновесные, в свою очередь, бывают: стационарные (вне зависимости от внешней среды); нестационарные (происходят или зависят от внешней среды). Неравновесные процессы подразделяются на: линейные (стационарные или нестационарные); Нелинейные (стационарные и нестационарные). Все опасности и основы защиты от них подразделяются на три круга действия: первый круг – опасности, действующие непосредственно на человека; второй круг – опасности, характерные для урбанизированных территорий; третий круг – опасности глобального влияния.

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-7.jpg" alt="> Возникновение опасной или чрезвычайной ситуации при наличии потоков от источника опасности (а) или"> Возникновение опасной или чрезвычайной ситуации при наличии потоков от источника опасности (а) или превышении допустимых уровней концентрации (усвоения объектом воздействия) вещества (энергии, информации) из потока (б) определяется не только величиной потока, но и свойствами объекта защиты (в), его способностью воспринимать и выдерживать воздействующие на него потоки. Опасности реализуются (проявляют себя) при взаимодействии: - источника опасности, генерирующего поток воздействия, и объекта воздействия, воспринимающего этот поток (объект воздействия); - систем «источник опасности – объект воздействия» . Для возникновения и реализации опасности необходимо соблюдение следующих условий: - наличие совокупности систем «источник воздействия – объект воздействия» и их совпадение по месту и времени пребывания в одном пространстве; - наличие источника опасности, способного создавать большие потоки вещества, энергии или информации (а); - наличие у объекта воздействия ограничений по величине воздействия потоков (объект защиты в); - при отсутствии объекта защиты неспособность (малая степень защиты) противостоять незащищенного объекта негативному (опасному) воздействию потока. в объект защищенный незащищенный а поток б воздействия защиты объект источник опасности

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-8.jpg" alt="> В любой точке пространства (среды обитания, жизненного пространства, окружающей среды) с"> В любой точке пространства (среды обитания, жизненного пространства, окружающей среды) с координатами x, y, z потоки (массовые или вещества, энергетические, информационные) могут оказывать воздействие Р А на объект защиты (воздействия) А, которое определяется его интенсивностью I и длительностью экспозиции t: PА (x, y, z) = ƒ (I, t) жизненный Интенсивность I потока определяется: потенциал - массового (вещества) Iв = G / (F × t) [г/(м 2 × с)]; 1 - энергии Iэ = Q / (F × t) [Дж /(м 2 × с) или Вт/м 2]; - информации 2 3 Iи = И / t (бит/сек); 4 где: интенсивность фактора G - масса вещества, г; 5 воздействия F - площадь поперечного сечения потока, Зависимость жизненного м 2; потенциала от интенсивности фактора Q - энергия в потоке, Дж; воздействия: И – количество информации в двоичных 1 – зона оптимума (комфорта); 2 – зона допустимой жизнедеятельности; знаках. 3 – зона угнетения; 4 – зона гибели; 5 – зона жизни

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-9.jpg" alt="> Изменяя интенсивность факторов воздействия (потоков) в среде обитания природного объекта (объекта воздействия в"> Изменяя интенсивность факторов воздействия (потоков) в среде обитания природного объекта (объекта воздействия в пространстве воздействия потоков), расчетными способами получаются характерные виды воздействия потоков на человека: комфортное (оптимальное), когда потоки соответствуют оптимальным условиям воздействия: оптимальные условия деятельности и отдыха; наилучшие условия для проявления наивысшей работоспособности и продуктивности деятельности; гарантированное сохранение здоровья человека и целостного компонента среды обитания; допустимое, когда потоки, действуя на человека и среду обитания, вызывают: отсутствие негативного влияния на здоровье; дискомфорт, снижение эффективности деятельности человека; при соблюдении условий ограничений (допустимого воздействия) отсутствие возможности возникновения и развития необратимых негативных процессов у человека и в среде обитания; опасное, когда потоки превышают допустимые уровни и вызывают: негативное воздействие на здоровье человека; заболевания при длительном воздействии; деградацию среды обитания; чрезвычайно опасное, когда потоки высоких уровней за короткий период времени вызывают: травматизм, тяжелые заболевания, летальный исход; разрушения в среде обитания; распад систем и организмов на простые системы и элементы.

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-10.jpg" alt="> Классификация опасностей (качественная характеристика"> Классификация опасностей (качественная характеристика опасностей) Признаки классификации Вид (класс) опасности I группа – свойства опасностей По происхождению естественные антропогенные техногенные По видам потоков массовые энергетические информационные По интенсивности потоков опасные чрезвычайно опасные По длительности воздействия постоянные переменные, периодические импульсные, кратковременные По виду зоны воздействия производственные бытовые городские (транспортные и др.) зоны чрезвычайных ситуаций (экологического бедствия) По размерам зоны воздействия локальные местные (муниципальные) межтерриториальные (межмуниципальные) региональные межрегиональные глобальные По степени завершенности процесса воздействия потенциальные реализованные II группа - свойства объекта защиты По способности различать (идентифицировать) опасности различаемые неразличаемые По виду негативного воздействия (влияния) опасности вредные травмоопасные По численности лиц, подверженных опасному воздействию индивидуальные (личные) групповые (коллективные) массовые

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-11.jpg" alt="> Количественная характеристика опасностей Для количественной оценки опасностей используют: - "> Количественная характеристика опасностей Для количественной оценки опасностей используют: - критерии допустимого вредного воздействия; - критерий травмобезопасности; - показатели негативного воздействия (влияния) опасностей. Критерием допустимого вредного воздействия на систему (объект) является интенсивность потока в определенной точке пространства. В любой точке пространства (среды обитания, жизненного пространства, окружающей среды) с координатами x, y, z потоки (массовые или вещества, энергетические, информационные) могут оказывать воздействие РА на объект защиты (воздействия) А, которое определяется его интенсивностью I и длительностью экспозиции t: PА (x, y, z) = f (I, t) Интенсивность I потока определяется: массового (вещества) – Iв = G / (F × t) [г/(м 2 × с)]; энергии – Iэ = Q / (F × t) [Дж /(м 2 × с) или Вт/м 2]; информации – Iи = И / t (бит/сек); где: G - масса вещества, г; F - площадь поперечного сечения потока, м 2; Q - энергия в потоке, Дж; И – количество информации в двоичных знаках.

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-12.jpg" alt=">Основным условием допустимого воздействия потока для объекта А (человека) в зоне (среде, точке) пребывания"> Основным условием допустимого воздействия потока для объекта А (человека) в зоне (среде, точке) пребывания человека является: П ≤ ПДП, где: П- реальный показатель потока; ПДП – предельно допустимое значение потока. Допустимое воздействие потока энергии выражается: Iэi ≤ ПДУi, где: Iэi – интенсивность i-го потока энергии в жизненном пространстве; ПДУi – предельно допустимый уровень интенсивности i-го потока энергии. Массовые потоки (потоки веществ) воздействуют на человека и среду обитания (окружающую среду) посредством изменения концентрации содержания этих веществ, при этом допустимое количество i-го вещества Gi, содержащегося в объеме V пространства Q, отвечающего до воздействия потока требованиям нормативных концентраций его содержания, определяется: Gi ≤ (ПДКi – Сфi) × V, где: ПДКi – предельно допустимая концентрация i-го вещества в среде обитания (окружающей среде); Сфi – фоновое (начальное) загрязнение среды обитания (окружающей среды) i-м веществом.

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-13.jpg" alt="> Классические определения вероятности где m - число благоприятствующих событию"> Классические определения вероятности где m - число благоприятствующих событию A исходов, n - число всех элементарных равновозможных исходов. Теорема сложения вероятностей несовместных событий: Теорема сложения вероятностей совместных событий: Теорема умножения вероятностей независимых событий: Теорема умножения вероятностей зависимых событий: где: - условная вероятность события А при условии, что произошло событие В; - условная вероятность события В при условии, что произошло событие А. Формула полной вероятности: где: - полная группа гипотез, то есть: а Ω - достоверное событие.

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-14.jpg" alt="> Взаимосвязь риска и вероятности реализации события (опасности) Риск всегда обозначает вероятностный"> Взаимосвязь риска и вероятности реализации события (опасности) Риск всегда обозначает вероятностный характер исхода, при этом под понятием «риск» подразумевается вероятность получения неблагоприятного результата (потерь), т. е. вероятность получить результат, отличный от ожидаемого. Сам «риск» , как следует из определения, обладает характерными свойствами: Неопределённость. Риск существует тогда и только тогда, когда возможно не единственное развитие событий. Ущерб. Риск существует, когда исход может привести к ущербу (убытку) или другому негативному последствию. Наличие анализа. Риск существует, только когда сформировано субъективное мнение «предполагающего» о ситуации и дана качественная или количественная оценка негативного события будущего периода (в противном случае это угроза или опасность). Значимость. Риск существует, когда предполагаемое событие имеет практическое значение и затрагивает интересы хотя бы одного субъекта. Риск без принадлежности не существует. Риску присущи основные функции: - стимулирующая функция имеет конструктивный (создание защищающих инструментов и устройств) и деструктивный (авантюризм, волюнтаризм) аспекты; - защитная функция тоже имеет два аспекта: историко-генетический (поиск средств защиты) и социально-правовой (необходимость законодательного закрепления понятия «правомерность риска»). Стимулирующая функция риска подразумевает вспомогательные функции: компенсирующую (возможность дополнительной прибыли) и социально-экономическую (селективную-выделения эффективных собственников) 4 основные функции: -аналитическая - наличие риска предполагает необходимость выбора одного из возможных вариантов правильного решения; -инновационная - проявляются в стимулировании поиска нетрадиционных решений проблем; -регулятивная - имеет противоречивый характер и выступает в двух формах: конструктивной и деструктивной.

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-15.jpg" alt="> Риски и их происхождение Риск – вероятность"> Риски и их происхождение Риск – вероятность реализации негативного воздействия (опасности) за определенный период времени. Оценка риска - процесс, используемый для определения степени риска анализируемой опасности для здоровья человека, имущества или окружающей среды. При использовании статистических данных величину риска определяют: R = Nчс / Nо где: R – риск; Nчс – число чрезвычайных ситуаций в год; Nо – общее число событий в год Риск - мера частоты возникновения события (реализации опасности): произведение частоты на вероятность (размерность – событие/ед. времени) х вероятность присутствия и одновременной гибели людей при этих событиях (значение вероятности лежит в интервале 0 -1); величина, имеющая размерность частоты (последствие/ед. времени). Величина риска определяется по зависимости: Риск = Частота. Значимость

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-16.jpg" alt=">РИСК или степень риска - это сочетание частоты (или вероятности) и последствий определенного опасного"> РИСК или степень риска - это сочетание частоты (или вероятности) и последствий определенного опасного события. «Риск» отличают от «угрозы» . Угроза - это неисследованное негативное событие, которое некоторые аналитики могут быть неспособными оценить при оценке риска, потому что это событие никогда не происходило, и для которого не доступна никакая информация о эффективных профилактических мерах (шаги, предпринимаемые, чтобы уменьшить вероятность или воздействие возможного будущего события). Это различие наиболее ясно иллюстрируется предупредительным принципом, который стремится уменьшить угрозу, требуя от неё быть сведённой к набору хорошо-определённых рисков, чтобы только затем перейти к действиям, проектам, новшествам или экспериментам. Понятие риска всегда включает два элемента: -частоту, с которой осуществляется опасное событие и последствия этого события; -реализации опасностей определенного класса. Риск может быть определен как: - частота (размерность - обратное время); -вероятность возникновения одного события при наступлении другого события (безразмерная величина, лежащая в пределах от 0 до 1). -РИСК ВОЗНИКНОВЕНИЯ ЧРЕЗВЫЧАЙНОЙ СИТУАЦИИ (РИСК ЧС) - вероятность или частота возникновения аварии, катастрофы (чрезвычайной ситуации).

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-17.jpg" alt="> Классификация рисков (по задаче исследования) Технический риск - вероятность отказа технических"> Классификация рисков (по задаче исследования) Технический риск - вероятность отказа технических устройств с последствиями определённого уровня (класса) за определённый период функционирования опасного производственного объекта. Индивидуальный риск - частота поражения отдельного человека в результате воздействия исследуемых факторов опасности аварий. Потенциальный территориальный риск (или потенциальный риск) - частота реализации поражающих факторов аварии в рассматриваемой точке территории. Частным случаем территориального риска является экологический риск, который выражает вероятность экологического бедствия, катастрофы, нарушения дальнейшего нормального функционирования и существования экологических систем и объектов в результате антропогенного вмешательства в природную среду или стихийного бедствия. Коллективный риск (групповой, социальный) - это риск проявления опасности того или иного вида для коллектива, группы людей, для определённой социальной или профессиональной группы людей. Частным случаем социального риска является экономический риск, который определяется соотношением пользы и вреда получаемого обществом от рассматриваемого вида деятельности. Приемлемый (допустимый) риск аварии - риск, уровень которого допустим и обоснован исходя из социально-экономических соображений. Риск эксплуатации объекта является приемлемым, если ради выгоды, получаемой от эксплуатации объекта, общество готово пойти на этот риск. Таким образом, приемлемый риск представляет собой некоторый компромисс между уровнем безопасности и возможностями его достижения. Величина приемлимого риска для различных обществ, социальных групп и отдельных людей - различная. В настоящее время принято считать, что для действия техногенных опасностей в целом индивидуальный риск считается приемлемым, если его величина не превышает 10− 6. Профессиональный риск - это риск, связанный с профессиональной деятельностью человека.

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-18.jpg" alt="> Классификация рисков (по задаче управления рисками) Субъективный Объективный"> Классификация рисков (по задаче управления рисками) Субъективный Объективный (риск, последствия которого невозможно (риск с точно измеримыми последствиями) объективно оценить) Финансовый Нефинансовый (риск, прямые последствия которого заключаются (риск с неденежными потерями, например потерей в денежных потерях) здоровья) Динамический Статический (риск, вероятность и последствия которого (практически не меняющийся во времени риск, изменяются в зависимости от ситуации, например например риск пожара) риск экономического кризиса) Фундаментальный Частный (несистематический, недиверсифицированный, (систематический, диверсифицированный, риск с тотальными последствиями) локальными последствиями) Спекулятивный Чистый (риск, одним из последствий которого может быть (риск, последствиями которого могут быть лишь выгода-не существует по определению, а является ущерб или сохранение текущего положения) дуальным случайным событием сочетающим и риск и шанс)

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-19.jpg" alt="> Для определения генезиса рисков виды риска типизируются: по положению источников рисков -"> Для определения генезиса рисков виды риска типизируются: по положению источников рисков - в обществе, природе, техносфере; по принадлежности объектов - адресату риска (общество (О), природная среда (П), техносфера (Т). Основные риски природно-техногенной сферы Риски развития опасных Риски аварий и катастроф на природных процессов потенциально опасных объектах Загрязнение окружающей среды Планетарные риски Риски, связанные с глобальными Риски, связанные с деградацией изменениями климата окружающей среды Истощение природных и биологических ресурсов

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-20.jpg" alt=">Факторы и условия зарождения и развития риска в техносфере Первопричины"> Факторы и условия зарождения и развития риска в техносфере Первопричины риска: - отказы в работе узлов и оборудования вследствие их конструктивных недостатков, плохого технического изготовления или нарушения правил технического обслуживания; -отклонения от нормальных условий эксплуатации; ошибки персонала; -- внешние воздействия и пр. Вследствие возможности возникновения указанных причин опасные промышленные объекты постоянно находятся в неустойчивом состоянии, которое по отношению к безопасности производства становится особенно критичным при возникновении аварийных ситуаций на объектах.

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-21.jpg" alt=">Риск возникает при следующих необходимых и достаточных условиях: - существование фактора риска (источника опасности);"> Риск возникает при следующих необходимых и достаточных условиях: - существование фактора риска (источника опасности); - присутствие данного фактора риска в определенной, опасной (или вредной) для объектов воздействия дозе; - подверженность (чувствительность) объектов воздействия к факторам опасностей Между авариями в самых разных отраслях можно заметить явное сходство. Обычно аварии предшествует накопление дефектов в оборудовании или отклонения от нормального хода процессов. Эта фаза может длиться минуты, сутки или даже годы. Сами по себе дефекты или отклонения еще не приводят к аварии, но готовят почву для нее. Операторы, как правило, не замечают этой фазы из-за невнимания к регламенту или недостатка информации о работе объекта, так что у них не возникает чувства опасности. На следующей фазе происходит неожиданное или редкое событие, которое существенно меняет ситуацию. Операторы пытаются восстановить нормальный ход технологического процесса, но, не обладая полной информацией, зачастую только усугубляют развитие аварии. Наконец, на последней фазе еще одно неожиданное событие - иногда совсем незначительное - играет роль толчка, после которого техническая система перестает подчиняться людям, и происходит катастрофа. Риск является неизбежным, сопутствующим фактором промышленной деятельности. Риск объективен, для него характерны неожиданность, внезапность наступления, что предполагает прогноз риска, его анализ, оценку и управление - ряд действий по недопущению факторов риска или ослаблению воздействия опасности.

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-22.jpg" alt="> Основными видами рисков по происхождению и воздействию на различные сферы (среды) окружающей"> Основными видами рисков по происхождению и воздействию на различные сферы (среды) окружающей среды являются природный, техногенный (технический), социальный. Для определения генезиса рисков виды риска типизируются: по положению источников рисков - в обществе, природе, техносфере; по принадлежности объектов - адресату риска (общество (О), природная среда (П), техносфера (Т). В зависимости от положения и происхождения источников рисков определяется 8 основных видов рисков: О-О, О-П, О-Т, Т-О, Т-П, П-О, П-Т Сочетания Вид риска Некоторые примеры, повышающие риск О-О Социальный Безработица, невыплата заработанной платы Т-Т Техногенный Снижение финансирования превентивных, предупредительных мероприятий; технологический терроризм О-Т Экономический Отсутствие нормативно-правовых актов, регулирующих экономический механизм отношений в области предупреждения ЧС О-П Экологический Ведение боевых действий; уменьшение средств, направленных на финансирование природоохранных мероприятий* Т-О Техногенный Авария на ЧАЭС привела к необходимости эвакуации населения из 30 -км зоны Социальный Т-П Экологический Авария на ЧАЭС; вредные выбросы в атмосферу промышленных объектов, автомобилей П-О Природный Стихийные бедствия П-Т

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-23.jpg" alt="> Индивидуальный риск Rи обусловлен вероятностью реализации опасностей с воздействием"> Индивидуальный риск Rи обусловлен вероятностью реализации опасностей с воздействием на человека как объект воздействия в конкретных ситуациях: Rи = Т / С, где: Rи – индивидуальный риск; Т – численность погибших (пострадавших) за год от определенного фактора или совокупности воздействия ряда факторов; С – численность людей, подверженных воздействию этого фактора (ряда факторов) за год. В более расширенном понимании индивидуальный риск - вероятность поражающих воздействий определенного вида (смертельный исход, нетрудоспособность, серьезные травмы без потери трудоспособности, травмы средней тяжести и незначительные повреждения), возникающих при реализации определенных опасностей в определенной точке пространства, где может находиться индивидуум. Количественно величина индивидуального риска равна вероятности (частоте) поражающих воздействий определенного вида (смертельный исход, нетрудоспособность, серьезные травмы без потери трудоспособности, травмы средней тяжести и незначительные повреждения).

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-24.jpg" alt="> Источники и факторы индивидуального риска Источник индивидуального Наиболее распространенный фактор"> Источники и факторы индивидуального риска Источник индивидуального Наиболее распространенный фактор риска смерти риска Внутренняя среда организма Наследственно-генетические, психосоматические человека заболевания, старение Виктимность Совокупность личных качеств человека как жертвы потенциальных опасностей Привычки Курение, употребление алкоголя, наркотиков, иррациональное питание Социальная экология Некачественный воздух, вода, продукты питания; вирусные инфекции; бытовые травмы, пожары Профессиональная деятельность Опасные и вредные производственные факторы Транспортные сообщения Аварии и катастрофы транспортных средств Непрофессиональная Опасности, обусловленные любительским спортом, деятельность туризмом, альпинизмом, другими увлечениями (зимняя рыбалка) Социальная среда Вооруженный конфликт, преступление, убийство Окружающая природная среда Землетрясение, извержение вулкана, наводнение, оползни, ураган и другие стихийные бедствия

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-25.jpg" alt="> Характерные значения индивидуального риска гибели людей от естественных и "> Характерные значения индивидуального риска гибели людей от естественных и техногенных факторов Причина возникновения (источник) риска Rи, чел/год Степень опасности территории (зоны) риска Сердечно-сосудистые заболевания 3, 4 х10 -3 Зона неприемлемого риска (R ³ 10 -3) Злокачественные опухоли 1, 6 х10 -3 Автомобильные аварии 10 -3 Несчастные случаи на производстве 3 х10 -4 Переходная зона (зона жесткого контроля) Аварии на железнодорожном, водном и воздушном транспорте, 10 -5 (10 -6 £ R £ 10 -3) пожары и взрывы Проживание вблизи ТЭС (при нормальном режиме работы) 10 -6 Все стихийные бедствия, укусы насекомых 10 -7 Зона приемлемого риска (R

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-26.jpg" alt="> Толерантность – способность организма (объекта воздействия) переносить источник "> Толерантность – способность организма (объекта воздействия) переносить источник опасности неблагоприятное влияние того или иного фактора окружающей среды (источника опасности). Пределы толерантности определяются следующими зона гибели границами: область нормальной зона угнетения жизнедеятельности, которая включает в себя зону допустимых Зона допустимых значений фактора воздействия значений фактора воздействия (неблагоприятного влияния) и зону оптимума с точкой комфорта а (точкой максимума жизненного а потенциала); зона угнетения (зона с большими отклонениями фактора от оптимума); зона гибели (зона со значениями фактора, за пределами которого существование организма (объекта воздействия) невозможно.

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-27.jpg" alt="> Анализ риска - получение количественных оценок потенциальной опасности промышленных объектов или различных"> Анализ риска - получение количественных оценок потенциальной опасности промышленных объектов или различных явлений, включает в себя решение следующих задач: - построение всего множества сценариев возникновения и развития аварии; - оценку частот реализации каждого из сценариев возникновения и развития аварии; - построение полей поражающих факторов, возникающих при различных сценариях развития аварии; - оценку последствий воздействия поражающих факторов аварии на человека (или другие материальные объекты). Построение F(N) - диаграммы по данным различных видов рисков (чрезвычайных ситуаций) на территории (зонах) их воздействия

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-28.jpg" alt=">Статистический риск - вероятность некоторого нежелательного события с оценкой его ожидаемого вреда. В статистической"> Статистический риск - вероятность некоторого нежелательного события с оценкой его ожидаемого вреда. В статистической теории принятия решений функция риска оценки δ(x) для параметра θ, вычисленная при некоторых наблюдаемых x, определяется как математическое ожидание функции потерь L: Риск(R) - количественная характеристика опасности, определяемая частотой реализации опасностей: это отношение числа неблагоприятных последствий (число смертельных случаев, число случаев заболеваний, инвалидности и т. д. , вызванных действием на человека конкретной опасности (n), к их возможному числу за определённый период(N): R=N(t)/Q(f) где N(t)- количественный показатель частоты нежелательных событий в единицу времени t; Q(f)- число объектов риска, подверженных определенному фактору риска f.

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-29.jpg" alt="> Определение степени опасности территорий (зон) риска Определение"> Определение степени опасности территорий (зон) риска Определение степени опасности конкретных территорий (зон) риска производится по результатам прогнозирования статистическим методом путем сравнения показателей общего (интегрального, потенциального риска, коллективного риска, индивидуального риска, риска нанесения материального ущерба) с установленными руководящими документами критериями. В зависимости от опасности потока и риска нахождения объекта воздействия (защиты) территория может быть отнесена к одной из следующих категорий: территория (зона) приемлемого риска; переходная зона - территория (зона) жесткого контроля за мероприятиями по уменьшению риска; территории (зона) неприемлемого риска. При оценке опасности территорий (зон) следует использовать критерии, приведенные в матрице “вероятность - ущерб” Частота Социальный ущерб реализации опасности (ЧС класса не ниже местной) случаев/год Погибло более Погиб один человек, Погибших нет, Серьезно пострадавших Лиц с потерей одного человека, имеются пострадав-шие имеются серьезно нет, имеются потери трудоспособности трудоспо-собности нет имеются пострадав-шие пострадав-шие >1 Зона 1 - 10 -1 Зона неприемлемого риска жесткого контроля необходимы неотложные меры необходима 10 -1 - 10 -2 по уменьшению риска целесообразности Зона оценка уменьшению мер по 10 -2 - 10 -3 риска приемлемого риска 10 -3 - 10 -4 нет необходимости в 10 -4 - 10 -5 мероприятиях по уменьшению риска 10 -5 - 10 -6

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-30.jpg" alt="> Классификация рисков по объектам и источникам рисков и нежелательным событиям в"> Классификация рисков по объектам и источникам рисков и нежелательным событиям в результате их реализации Вид риска Объект риска Источник риска Нежелательное событие Индивидуальный Человек Условия Заболевание, травма, инвалидность, жизнедеятельности смерть человека Технический Технические системы Техническое Авария, взрыв, катастрофа, пожар, (техногенный) и объекты несовершенство, разрушение нарушение правил эксплуатации технических систем и объектов Экологический Экологические Антропогенное Антропогенные экологические системы вмешательство в катастрофы, стихийные бедствия природную среду, техногенные ЧС Социальный Социальные группы Чрезвычайная ситуация, Групповые травмы, заболевания, снижение качества жизни гибель людей, рост смертности Экономический Материальные Повышенная опасность Увеличение затрат на безопасность, ресурсы производства или ущерб от недостаточной природной среды защищенности

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-31.jpg" alt="> Риски в техносфере Технический риск Rтех - риск"> Риски в техносфере Технический риск Rтех - риск возникновения аварии на объекте экономики, не приводящий к экологическим последствиям: где R - риск; P - вероятность одного нежелательного события L - количество потерянных денег или жертв в результате одного нежелательного события. Техногенный риск Rт - риск возникновения аварии на объекте экономики, оказывающей неблагоприятное воздействие на окружающую среду и биосферу. Множество причин возникновения техногенного риска (аварийной ситуации, катастрофы) можно поделить на четыре класса: - отказы оборудования; - отклонения от технологического регламента; - ошибки производственного персонала; - внешние причины (стихийные бедствия, катастрофы, диверсии и т. д.). Для каждого из приведенных классов существуют методы, позволяющие или построить сценарий развития аварии, катастрофы или определить частоту ее возникновения. В основу моделирования техногенных рисков (чрезвычайных ситуаций, связанных с ними как предельное их состояние) положена причинно-следственная связь двух процессов: воздействия поражающих факторов на объект и сопротивления самого объекта этому воздействию, при этом оба процесса носят случайный характер.

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-32.jpg" alt=">Основные стадии (этапы) количественного анализа техногенного риска ">

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-33.jpg" alt="> Коллективный риск - ожидаемое количество смертельно травмированных в результате возможных аварий"> Коллективный риск - ожидаемое количество смертельно травмированных в результате возможных аварий за определенный период времени. Потенциальный территориальный риск - пространственное распределение частоты реализации негативного воздействия определенного уровня. Социальный риск (Rс) - зависимость частоты событий F, в которых пострадало на том или ином уровне число людей, больше определенного Ng, от этого определенного числа людей N (или вероятности нежелательных событий F (или частоты их возникновения), заключающихся в поражении не менее определенного числа людей Ng, которые подвергаются поражающим воздействиям определенного вида при реализации определенных опасностей, от этого числа людей N). Негативное воздействие опасностей на людей, приводящее к их гибели, выражается в величине социального риска: Rс = ΔР / Р где: ΔР – численность погибших от чрезвычайных ситуаций (последствий опасного воздействия поражающих факторов); Р – средняя численность населения, проживающих или работающих на данной территории, подверженной влиянию опасных факторов. К источникам и факторам социального риска Rс относятся: -особо опасные объекты (опасные производственные и потенциально опасные объекты); -технические средства, при функционировании которых возможно возникновение аварий, катастроф (чрезвычайных ситуаций); -урбанизированные территории с неустойчивой ситуацией; -эпидемии; -стихийные бедствия. Социальный риск Rс в зоне воздействия опасного объекта зависит от величины техногенного риска Rт объекта и показателей количественного распределения людей, находящихся в зоне риска.

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-34.jpg" alt="> Анализ рисков Результаты анализа индивидуального и социального"> Анализ рисков Результаты анализа индивидуального и социального рисков изображаются в виде графиков (F/N - диаграмм). Социальный риск R = F(N) характеризует масштаб возможных чрезвычайных ситуаций (поражения людей в опасных зонах). Социальный риск может быть рассчитан по формуле: где: P(N/Qm) - вероятность гибели (поражения) N людей от Qm - го поражающего фактора; P(Qm/Al i) - вероятность возникновения Qm -го поражающего фактора при реализации Аl -го события (аварии, опасного природного явления, катастрофы, стихийного или иного бедствия); F(Al) - частота возникновения А l -го события в год.

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-35.jpg" alt="> Предельно допустимый уровень риска - уровень индивидуального риска, обусловленный хозяйственной деятельностью, который"> Предельно допустимый уровень риска - уровень индивидуального риска, обусловленный хозяйственной деятельностью, который не должен превышаться, независимо от экономических и социальных преимуществ такой деятельности для общества в целом. Он должен быть настолько низким, чтобы это не вызывало беспокойства индивидуума. При этом целью является не ограничение риска, обусловленного отдельными видами деятельности, а ограничение совокупного риска для индивидуума от всей деятельности в целом. Пренебрежимый уровень риска - уровень индивидуального риска, обусловленный хозяйственной деятельностью, который пренебрежимо мал для индивидуума, поскольку, например, он находится в пределах флуктуации естественного (фонового) уровня риска. Такой уровень риска находится вне сферы интересов регулирующего органа. Приемлемый уровень риска - уровень индивидуального риска, обусловленный хозяйственной деятельностью, который является приемлемым для регулирующего органа. Он находится в диапазоне от предельно допустимого уровня риска до пренебрежимого и должен быть настолько низким, насколько это возможно по экономическим и социальным соображениям.

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-36.jpg" alt="> Rт, Rи Rт = Rи "> Rт, Rи Rт = Rи зона неприемлемого риска 10 -4 Rс 10 -5 10 -6 зона жесткого контроля 10 -7 10 -9 зона приемлемого риска 100 1000 10 000 DР 1 Зависимость социального риска Rс гибели людей около опасных производственных (потенциально опасных) объектов от численности лиц, подверженных воздействию техногенного риска Rт (ΔР)

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-37.jpg" alt=">Определение степени риска для групп населения на потенциально опасной территории в условиях неопределенности (отсутствия"> Определение степени риска для групп населения на потенциально опасной территории в условиях неопределенности (отсутствия данных для прогноза опасного события).

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-38.jpg" alt=">При уменьшении риска ниже уровня 1, 0 х10 -6 в год специальные меры для"> При уменьшении риска ниже уровня 1, 0 х10 -6 в год специальные меры для снижения уровня риска не планируются, при декларировании безопасности опасных производственных объектов величина 1, 0 х10 -6 принимается за значение степени риска для безопасной деятельности промышленных предприятий (опасных производственных и потенциально опасных объектов) Наименовани Концепции анализа риска е способов анализа и техническая экономическа психологическая социальная определения я показателей риска методы феноменологичес затратно- межиндивидуаль интерпрета- -кий прибыльный -ных ционный детерминистский вероятностны предпочтений социологиче- вероятностный й психолого- ский аналитический культурологи- вероятностный ческий вероятностный методики статистическая теоретико-вероятностная эвристическая ведомственные (принятые федеральными органами исполнительной власти)

Src="https://present5.com/presentation/3/38186855_438458497.pdf-img/38186855_438458497.pdf-39.jpg" alt="> Для анализа и оценки частоты реализации техногенных рисков обычно используются следующие подходы: "> Для анализа и оценки частоты реализации техногенных рисков обычно используются следующие подходы: - использование статистических данных по аварийности и надежности технологической системы, соответствующих типу объекта или виду деятельности; - использование логических методов анализа "деревьев событий" или "деревьев отказов"; - экспертная оценка путем учета мнения специалистов в данной области. Наиболее характерные поражающие факторы (ПФ) производственных аварий: -воздушная ударная волна взрывов облаков топливовоздушных смесей (ТВС) и конденсированных взрывчатых веществ (ВВ); -тепловое излучение огневых шаров и горящих разлитий; -токсические нагрузки; -фрагменты, образующиеся при разрушении зданий, сооружений, технологического оборудования; -осколки остекления.