Уравнение менделеева клапейрона плотность газа. Уравнение Клапейрона — Менделеева

В этом разделе мы знакомимся с уравнением состояния идеального газа.

Эксперименты показали, что при условиях не слишком отличающихся от нормальных (температура порядка сотен кельвинов, давление порядка одной атмосферы) свойства реальных газов близки к свойствам идеального газа.

Пример. На примере водяного пара покажем, что при обычных условиях свойства реальных газов близки к свойствам идеального. По таблице Менделеева можно определить массу моля Н 2 0 :

Плотность воды в жидком состоянии

Отсюда можно найти объем одного моля воды:

Один моль любого вещества содержит одно и то же число молекул (число Авогадро):

Получаем отсюда объем V 1 , приходящийся на одну молекулу воды:

В конденсированном состоянии молекулы располагаются вплотную друг к другу, то есть в сущности V 1 есть объем молекулы воды, откуда следует оценка ее линейного размера (диаметра):

С другой стороны, известно, что объем V m одного моля любого газа при нормальных условиях равен

Поэтому на одну молекулу водяного пара приходится объем

Это значит, что газ можно нарезать мысленно на кубики с длиной ребра

и в каждом таком кубике окажется одна молекула. Иными словами, L - среднее расстояние между молекулами водяного пара. Мы видим, что L на порядок превосходит размер D молекулы. Аналогичные оценки получаются и для других газов, так что с хорошей точностью можно считать, что молекулы не взаимодействуют друг с другом, и при нормальных условиях газ идеален.

Как уже говорилось, уравнение состояния, имеющее вид, позволяет выразить один термодинамический параметр через два других. Конкретный вид этого уравнения зависит от того, какое вещество и в каком агрегатном состоянии рассматривается. Уравнение состояния идеального газа объединяет ряд экспериментально установленных частных газовых законов. Каждый из них описывает поведение газа при условии, что изменяются лишь два параметра.

1. Закон Бойля - Мариотта . Описывает процесс в идеальном газе при постоянной температуре.

Изотермический процесс - это термодинамический процесс, протекающий при постоянной температуре.

Закон Бойля - Мариотта гласит:

Для данной массы газа при постоянной температуре Т = const произведение давления газа на занимаемый им объем является постоянной величиной

Графически изотермический процесс в различных координатах изображен на рис. 1.7.

Рис.1.7. Изотермический процесс в идеальном газе: 1 - в координатах p V ; 2 - в координатах p - T ; 3 - в координатах T V

Показанные на рис. 1.7-1 кривые представляют собой гиперболы

располагающиеся тем выше, чем выше температура газа.

Экспериментальное исследование закона Бойля - Мариотта можно выполнить с помощью установки, показанной на рис. 1.8. В цилиндре, находящемся при постоянной температуре (что видно из показаний термометра), при перемещении поршня изменяется объем газа. Давление газа измеряется с помощью манометра. Результаты измерений давления и объема газа представляются на диаграмме p = p (V ) .

Рис. 1.8. Экспериментальное изучение изотермического процесса в газе

2. Закон Гей-Люссака. Описывает тепловое расширение идеального газа при постоянном давлении.

Закон Гей-Люссака гласит:

Объем данной массы определенного газа при постоянном давлении пропорционален его абсолютной температуре

Графически изобарный процесс в различных координатах показан на рис. 1.9.

Рис. 1.9. Изобарный процесс в газе: 1 - в координатах p – V; 2 - в координатах V – T; 3 - в координатах P – T

Экспериментальное изучение закона Гей-Люссака можно выполнить с помощью установки, показанной на рис. 1.10. В цилиндре газ нагревается с помощью горелки. Давление газа в процессе нагревания остается неизменным, что видно из показаний манометра. Температура газа измеряется с помощью термометра. Результаты измерений давления и температуры газа представляются на диаграмме V = V(Т) .

Рис. 1.10. Экспериментальное изучение изобарного процесса в газе

3. Закон Шарля. Описывает изменение давления идеального газа с ростом температуры при постоянном объеме.

Изохорный процесс - это процесс, протекающий при постоянном объеме.

Закон Шарля гласит:

Давление данной массы определенного газа при постоянном объеме пропорционально термодинамической температуре

Графически изохорный процесс в различных координатах показан на рис. 1.11.


Рис.1.11. Изохорный процесс в газе: 1 - в координатах p – V; 2 - в координатах p – T; 3 - в координатах V – T

Экспериментальное исследование закона Шарля можно выполнить с помощью установки, показанной на рис. 1.12. В цилиндре газ занимает постоянный объем (поршень неподвижен). При нагревании давление газа увеличивается, а при охлаждении уменьшается. Величина давления измеряется с помощью манометра, а температура газа - с помощью термометра. Результаты измерений давления и температуры газа представляются на диаграмме p=p(Т) .

Рис. 1.12. Экспериментальное изучение изохорного процесса в газе

Если объединить рассмотренные частные газовые законы, то получим уравнение состояния идеального газа (для одного моля)

(1.5)

в которое входит универсальная газовая постоянная R = 8,31 Дж/(моль· К). При одних и тех же значениях объема и температуры системы давление газа пропорционально числу молей вещества

Поэтому для произвольной массы газа m уравнение состояния идеального газа (1.6) примет вид

(1.6)

Это уравнение называют уравнением Клапейрона - Менделеева.

Дополнительная информация:

http://www.plib.ru/library/book/14222.html - Яворский Б.М., Детлаф А.А. Справочник по физике, Наука, 1977 г. – стр. 162–166, - сводная таблица свойств всевозможных изопроцессов с идеальным газом;

http://kvant.mirror1.mccme.ru/1990/08/gazovye_zakony_i_mehanicheskoe.htm - журнал Квант, 1990 г. № 8, стр. 73–76, Д. Александров, Газовые законы и механическое равновесие;

http://www.alleng.ru/d/phys/phys62.htm - Тульчинский М.Е. Качественные задачи по физике, Изд. Просвещение, 1972 г.; задачи № 489, 522, 551 на законы идеального газа;

http://marklv.narod.ru/mkt/str4.htm - школьный урок с картинками по модели идеального газа;

http://marklv.narod.ru/mkt/str7.htm - школьный урок с картинками по изопроцессам с идеальным газом.

Для объяснения свойств вещества в газообразном состоянии используется модель идеального газа.

Идеальным газом называют газ, для которого можно пренебречь размерами молекул и силами молекулярного взаимодействия; соударения молекул в таком газе происходят по закону соударения упругих шаров.

Реальные газы ведут себя подобно идеальному, когда среднее рас­стояние между молекулами во много раз больше их размеров, т. е. при достаточно больших разрежениях.

Состояние газа описывается тремя параметрами V, Р, Т, между которыми существует однозначное соотношение, называемое уравнением Менделеева -Клапейрона.

R - молярная газовая постоянная, определяет рабо­ту, которую совершает 1 моль газа при изобарном нагревании его на 1 К.

Такое название этого уравнения обусловлено, тем, что впервые оно было получено Д.И. Менделеевым (1874г) на основе обобщения результатов, полученных до этого французским учёным Б.П. Клапейроном.

Из уравнения состояния идеального газа вытекает ряд важных следствий:

    При одинаковых температурах и давлениях в равных объёмах любых идеальных газов, содержится одинаковое количество молекул (закон Авагадро).

    Давление смеси химически невзаимодействующих идеальных газов равно сумме парциальных давлений этих газов (закон Дальтона ).

    Отношение произведения давления и объёма идеального газа к его абсолютной температуре есть величина постоянная для данной массы данного газа (объединенный газовый закон)

Всякое изме­нение состояния газа называют термодинамическим процессом.

При переходе данной массы газа из одного состояния в другое в общем случае могут меняться все параметры газа: объём, давление и температура. Однако, иногда меняются какие-либо два из этих параметров, а третий остаётся неизменным. Процессы, при котором один из параметров состояния газа остаётся постоянным, а два других изменяются, называют изопроцессами .

§ 9.2.1 Изотермический процесс (Т= const ). Закон Бойля-Мариотта .

Процесс, протекающий в газе, при котором температура остается постоянной, называютизотермическим («изос»- «одинаковый»; «терме» - «тепло»).

Практически этот процесс можно реализовать, медленно уменьшая или увеличивая объём газа. При медленном сжатии и расширении создаются условия поддержания постоянной температуры газа вследствие теплообмена с окружающей средой.

Если при постоянной температуре увеличивать объём V, давление Р уменьшается, когда объём V уменьшается - давление Р растёт, а произведение Р на V сохраняется.

рV = соnst (9.11)

Этот закон называется законом Бойля – Мариотта , так как почти одновременно был открыт в XVII в. французским ученым Э. Мариоттом и английским ученым Р. Бойлем.

Закон Бойля-Мариотта формулируется так: произведение давления газа на объем для данной массы газа есть величина постоянная:

Графическая зависимость давления газа Р от объёма V изображается в виде кривой (гиперболы), которая носит название изотермы (рис.9.8). Разным температурам соответствуют разные изотермы. Изотерма, соответствующая более высокой температуре, лежит выше изотермы, соответствующей более низкой температуре. А в координатах VT (объём – температура) и PT (давление – температура) изотермы являются прямыми линиями, перпендикулярными оси температур (рис.).

§ 9.2.2 Изобарный процесс (P = const ). Закон Гей-Люссака

Процесс, протекающий в га­зе, при котором давление остается постоянным, называют изобарным («барос» - «тяжесть»). Простейшим примером изобарного процесса является расширение нагреваемого газа в цилиндре со свободным поршнем. Наблюдаемое при этом расширение газа называют тепловым расширением .

Опыты, проведенные в 1802 году французским физи­ком и химиком Гей-Люссаком показали, Объем газа данной массы при постоянном давлении л инейно возрастает с увеличением температуры (закон Гей-Люссака) :

V = V 0 (1 + αt) (9.12)

Вели­чина α называется температурным коэффициентом объемного расши­рения (для всех газов
)

Если заменить температуру, отсчитанную по шкале Цельсия, термодинамической температурой получим закон Гей-Люссака в следующей формулировки: при неизменном давлении отношение объёма дано массы идеального газа к его абсолютной температуре является величиной постоянной, т.е.

Графически эта зависимость в координатах Vt изображается в виде прямой, выходящей из точки t=-273°С. Эту прямую называют изобарой (рис. 9.9). Разным давлениям соответствуют разные изобары. Поскольку при постоянной температуре с увеличением давления объём газа уменьшается, то изобара, соответствующая более высокому давлению, лежит ниже изобары, соответствующеё более низкому давлению. В координатах PV и PT изобары это прямые линии, перпендикулярные оси давления. В области низких температур близ­кой к температуре сжижения (конденсации) газов закон Гей-Люссака не выполняется, поэтому красная линия на графике заменена белой.

§ 9. 2. 3 Изохорный процесс (V = const ). Закон Шарля

Процесс, протекающий в газе, при котором объем остается постоянным, называют изохорным («хорема» - вместимость). Для осуществления изохорного процесса газ помещают в герметический сосуд, не меняющий свой объём

Французский физик Ж. Шарль установил:давление газа данной массы при постоянном объеме возрастает линейно с увеличе­нием температуры (закон Шарля):

Р = Р 0 (1 + γt) (9.14)

(р - давление газа при температуре t,°С; р 0 - его давление при 0°С].

Величина γ называется температурным коэффициентом давления . Ее значение не зависит от природы газа: для всех газов
.

Если заменить температуру, отсчитанную по шкале Цельсия, термодинамической температурой получим закон Шарля в следующей формулировки: при неизменном объёме отношение давления данной массы идеального газа к его абсолютной температуре является величиной постоянной, т.е.

Графически эта зависимость в координатах Рt изображается в виде прямой, выходящей из точки t=-273°С. Эту прямую называют изохорой (рис. 9.10). Разным объёмам соответствуют разные изохоры. Поскольку с увеличением объёма газа при постоянной температуре давление его уменьшается, то изохора, соответствующая большему объёму, лежит ниже изохоры, соответствующей меньшему объёму. В координатах PV и VT изохоры – это прямые линии, которые перпендикулярны оси объёма. В области низких температур близ­кой к температуре сжижения (конденсации) газов закон Шарля, также как и закон Гей-Люссака не выполняется.

За единицу температуры по термодинамической шкале принят кельвин (К); соответствует 1°С.

Температура, отсчитанная по термодинамической шкале температур называется термодинамической температурой . Так как точка плавления льда при нормальном атмосферном давлении, при­нятая за 0°С, равна 273,16 К -1 , то

1. Идеальным газом называется газ, в котором отсутствуют силы межмолекулярного взаимодействия. С достаточной степенью точности газы можно считать идеальными в тех случаях, когда рассматриваются их состояния, далекие от областей фазовых превращений.
2. Для идеальных газов справедливы следующие законы:

а) Закон Бойля - Mаpuomma: при неизменных температуре и массе произведение численных значений давления и объема газа постоянно:
pV = const

Графически этот закон в координатах РV изображается линией, называемой изотермой (рис.1).

б) Закон Гей-Люссака: при постоянном давлении объем данной массы газа прямо пропорционален его абсолютной температуре:
V = V0(1 + at)

где V - объем газа при температуре t, °С; V0 - его объем при 0°С. Величина a называется температурным коэффициентом объемного расширения. Для всех газов a = (1/273°С-1). Следовательно,
V = V0(1 +(1/273)t)

Графически зависимость объема от температуры изображается прямой линией - изобарой (рис. 2). При очень низких температурах (близких к -273°С) закон Гей-Люссака не выполняется, поэтому сплошная линия на графике заменена пунктиром.

в) Закон Шарля: при постоянном объеме давление данной массы газа прямо пропорционально его абсолютной температуре:
p = p0(1+gt)

где р0 - давление газа при температуре t = 273,15 К.
Величина g называется температурным коэффициентом давления. Ее значение не зависит от природы газа; для всех газов = 1/273 °С-1. Таким образом,
p = p0(1 +(1/273)t)

Графическая зависимость давления от температуры изображается прямой линией - изохорой (Рис. 3).

г) Закон Авогадро: при одинаковых давлениях и одинаковых температурах и равных объемах различных идеальных газов содержится одинаковое число молекул; или, что то же самое: при одинаковых давлениях и одинаковых температурах грамм-молекулы различных идеальных газов занимают одинаковые объемы.
Так, например, при нормальных условиях (t = 0°C и p = 1 атм = 760 мм рт. ст.) грамм-молекулы всех идеальных газов занимают объем Vm = 22,414 л.· Число молекул, находящихся в 1 см3 идеального газа при нормальных условиях, называется числом Лошмидта; оно равно 2,687*1019> 1/см3
3. Уравнение состояния идеального газа имеет вид:
pVm = RT

где р, Vm и Т - давление, молярный объем и абсолютная температура газа, а R - универсальная газовая постоянная, численно равная работе, совершаемой 1 молем идеального газа при изобарном нагревании на один градус:
R = 8.31*103 Дж/(кмоль*град)

Для произвольной массы M газа объем составит V = (M/m)*Vm и уравнение состояния имеет вид:
pV = (M/m) RT

Это уравнение называется уравнением Менделеева - Клапейрона.
4. Из уравнения Менделеева - Клапейрона следует, чти число n0 молекул, содержащихся в единице объема идеального газа, равно
n0 = NA/Vm = p*NA /(R*T) = p/(kT)

где k = R/NA = 1/38*1023 Дж/град - постоянная Больцмана, NA - число Авогадро.

Газовые законы. Уравнение Менделеева-Клапейрона.

Экспериментальное исследование свойств газов, проведенное в ХVII-XVIII вв. Бойлем, Мариоттом, Гей-Люссаком, Шарлем, привело к формулировке газовых законов.

1. Изотермический процесс – Т= const.

Закон Бойля-Мариотта: pV =const.

График зависимости p от V приведен на рис.2.1. Чем выше изотерма, тем более высокой температуре она соответствует, T 2 >T 1 .

2. Изобарный процесс– p = const.

Закон Гей-Люссака: .

График зависимости V от T приведен на рис. 2.2. Чем ниже к оси температуры наклонена изобара, тем большему давлению она соответствует, р 2 > p 1 .

3. Изохорный процесс– V =const.

Закон Шарля: .

График зависимости р от Т изображен на рис 2.3. Чем ниже к оси температуры наклонена изохора, тем большему объему она соответствует, V 2 > V 1 .

Комбинируя выражения газовых законов, получим уравнение, связывающее р, V , Т (объединенный газовый закон): .

Постоянная в этом уравнении определяется экспериментально. Для количества вещества газа 1 моль она оказалась равной R=8,31 Дж/(моль×К) и была названа универсальной газовой постоянной.

1 моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг. Число молекул (структурных единиц) в 1 моле равно числу Авогадро: N A =6,02.10 23 моль -1 . Для R справедливо соотношение: R=k N A

Итак, для одного моля: .

Для произвольного количества газа n = m/m , где m - молярная масса газа. В результате получим уравнение состояния идеального газа, или уравнение Менделеева-Клапейрона .

Уравнение состояния идеального газа (уравнение Менделеева - Клапейрона).

До этого рассматривались газовые процессы, при которых один из параметров состояния газа оставался неизменным, а два других изменялись. Теперь рассмотрим общий случай, когда изменяются все три параметра состояния газа и получим уравнение, связывающее все эти параметры. Закон, описывающий такого рода процессы, был установлен в 1834г. Клапейроном (французский физик, с 183г. работал в Петербургском институте путей сообщения) путем объединения рассмотренных выше законов.

Пусть имеется некоторый газ массой “m”. На диаграмме (P, V) рассмотрим два его произвольных состояния, определяемых значениями параметров P 1 , V 1 , T 1 и P 2 , V 2 , T 2 . Из состояния 1 в состояние 2 будем переводить газ двумя процессами:

1. изотермического расширения (1®1¢);

2. изохорического охлаждения (1¢®2).

Первый этап процесса описывается законом Бойля-Мариотта, поэтому

. (9.5)

Второй этап процесса описывается законом Гей-Люссака:

Исключая из этих уравнений , получим:

. (9.7)

Поскольку состояния 1 и 2 были взяты совершенно произвольно, то можно утверждать, что для любого состояния:

где С – постоянная для данной массы газа величина.

Недостатком этого уравнения является то, что величина “C” различна для различных газов, Для устранения этого недостатка Менделеев в 1875г. несколько видоизменил закон Клапейрона, объединив его с законом Авогадро.

Запишем полученное уравнение для объема V км. одного 1 киломоля газа, обозначив постоянную буквой “R”:

Согласно закону Авогадро при одинаковых значениях P и T киломоли всех газов будут иметь одинаковые объемы V км. и, следовательно, постоянная “R” будет одинакова для всех газов.

Постоянная “R”называется универсальной газовой постоянной. Полученное уравнение связывает параметры киломоля идеального газа и, следовательно, представляет уравнение состояния идеального газа.

Значение постоянной “R” можно вычислить:

.

От уравнения для 1кмоль легко перейти к уравнению для любой массы газа “m”, приняв во внимание, что при одинаковых давлениях и температуре “z” киломолей газа будут занимать в ”z” раз больший объем, чем 1 кмоль. (V=z×V км.).

С другой стороны отношение , где m – масса газа, m – масса 1 кмоля, будет определять число молей газа.

Умножим обе части уравнения Клапейрона на величину , получим

Þ (9.7а)

Это и есть уравнение состояния идеального газа, записанное для любой массы газа.

Уравнению можно придать другой вид. Для этого введем величину

где R – универсальная газовая постоянная;

N A – число Авогадро;

Подстановка числовых значений R и N A дает следующее значение:

.

Умножим и разделим правую часть уравнения на N A , тогда , здесь – число молекул в массе газа “m”.

С учетом этого

(*)

Вводя величину – число молекул в единице объема, приходим к формуле.