Органическое топливо (уголь, нефть, газ). Альтернативное топливо будущего

Происхождение природных источников энергии

Мировое производство энергии стремительно растет. В 1962 г. оно уже достигло примерно 33x1015 ккал. Большую часть этого количества человечество использует для механической работы и отопления. Непрерывно возрастает количество электрической энергии, включаемой в этот процесс в качестве посредника.

Как уже говорилось, работу нельзя накапливать, таким образом, в природе не может быть "запаса работы". Нет на Земле также электрической энергии в форме, доступной для непосредственного макроскопического использования. Поэтому для покрытия энергетических потребностей общества мы вынуждены обратиться к другим источникам.

Поскольку энергию нельзя "создать" из ничего, мы вынуждены производить необходимые для нас виды энергии путем преобразования других форм, причем это превращение должно быть экономичным и возможным в широких производственных масштабах. К носителям таких видов энергии следует отнести в первую очередь уголь (каменный и бурый), а также нефть и природный газ, применяющийся в настоящее время в промышленности в качестве топлива для двигателей, производящих механическую работу или электрическую энергию. Помимо указанных выше носителей энергии, в странах с подходящим рельефом местности довольно широко используется энергия воды ("белый уголь") и в меньшей мере ветра. В развитых странах применение мускульной энергии животных все больше и больше отходит на задний план. В настоящее время постоянно растет доля атомных электростанций в общем производстве электрической энергии. В связи со стремительным ростом потребности в энергии во всем мире предпринимаются попытки использовать в производственных целях новые источники энергии, например солнечное излучение. Предлагается, в частности, концентрировать солнечную энергию с помощью зеркал, а добытое таким образом тепло использовать для получения пара, который сможет приводить в движение турбины. Исследования в области проводников еще не дали больших результатов, но в настоящее время они уже обеспечивают возможность изготовления термо- и фотоэлементов, при помощи которых энергия теплового или светового излучения Солнца может быть превращена в электрическую энергию с КПД 10-13 %. Ученые занимаются также проблемой использования тепла Земли. Температура внутри Земли растет с глубиной. Если подвести тепло с больших глубин к поверхности земли, то можно понижая эту температуру частично превратить тепло в работу. На этом принципе уже построены геотермические электростанции. Однако на пути их более широкого распространения стоят еще не преодоленные технические трудности.

Предпринимаются также попытки использовать энергию, соответствующую разности уровней поверхности воды во время прилива и отлива.

Все эти новые источники энергии, в настоящее время покрывают весьма малую часть мирового потребления энергии. Ныне потребность в энергии удовлетворяется в основном за счет угля, нефти и прородного газа; такое положение, очевидно, сохранится и в ближайшем будущем. В связи с этим несомненный интерес представляет вопрос о происхождении энергии, накопленной в этих природных источниках.

Происхождение каменного угля

Уголь (каменный и бурый), употребляемый как горючее или топливо, в большинстве случаев залегает в земле (частично на глубине многих сотен метров). Только некоторые залежи бурого угля встречается на поверхности земли или непосредственно вблизи поверхностных слоев. Добытый уголь, кроме углерода, содержит различное количество соединений (главным образом соединений углерода с кислородом и водородом, и в меньшем количестве - с азотом, серой и другими элементами). Основными химическими элементами, входящими в состав угля, являются углерод, кислород и водород.

Бурые и каменные угли в большинстве своем имеют растительное происхождение и содержат в небольшом количестве минеральные вещества. Они образовались в теплом и сыром климате в глубокой древности из сильно разросшихся растений, когда они после гибели погружались на дно водоемов и поэтому не подвергались тлению и горению, при которых содержащийся в растениях углерод большей частью превращается в углекислый газ и другие летучие вещества. В процессах разложения этих растений (главным образом tj||| под воздействием микроорганизмов) вИЙ из них высвобождаются соединения, богатые водородом и кислородом, а содержание углерода растет - образуется торф. Торф затем покрывается другими отложениями (песком, глиной) и в результате геологических, движений опускается в глубь земли, где под давлением и при высокой температуре процесс торфооб-разования переходит в процесс угле-образования (повышение содержания углерода). В ходе связанной с этим процессом миграции элементов содержание водорода и кислорода продолжает уменьшаться, а содержание углерода - расти; в результате из торфа получаются бурый уголь, каменный уголь и, наконец, антрацит. Бурые угли образуются в течение 40-60 миллионов лет

Происхождение нефти и природного газа

Нефть и природный газ состоят главным образом из углеводородов (соединений углерода и водорода), а также в небольшом количестве из других элементов (серы, азота, кислорода и т.д.). Нефть содержит 82-87 % углерода и 11-14 % водорода. По вопросу происхождения нефти существуют различные точки зрения. Наиболее признанной является теория, согласно которой газ и нефть состоят из органических веществ, главным образом животного происхождения (некоторые ученые полагают, что нефть и газ во многих случаях образовались в глубинах земли в результате действия воды на карбиды металлов). Живые организмы, погибшие и опустившиеся на морское дно, попадают в такие условия, где они не могут ни распадаться в результате окисления, ни уничтожаться микроорганизмами, а вследствие отсутствия контакта с воздухом образуют илистые осадки. В результате геологических движений эти осадки проникают на большие глубины. Там под влиянием давления и высокой температуры, а возможно, и под воздействием микроорганизмов в течение миллионов лет проходит процесс сухой возгонки, при котором содержащийся в осадках углерод в большей своей части переходит в углеводородные соединения, в то время как большая часть кислорода и других элементов мигрирует. Жидкая субстанция, состоящая главным образом из смеси различных по молекулярному весу углеводородов, может и самостоятельно мигрировать, проникая через поры и трещины земных недр. Основными составными частями природного газа являются низкомолекулярные углеводороды (прежде всего метан и этан), нефть же представляет собой высокомолекулярные углеводороды.

Названия каменный уголь, нефть, указывающие на их происхождение из неживого материала (геологическое, а не биологическое), оправданы только отчасти. В действительности эти продукты образовались из веществ, возникших в результате жизнедеятельности животных и растений, и поэтому имеют биологическое происхождение. Однако те превращения, которые привели к образованию из животных и растительных организмов каменного угля, нефти и газа, в большинстве своем не носят биологического характера, а являются следствием геологических и геохимических условий (давление, температура и т.д.), создавшихся в окружающей неживой среде. Известны и другие минералы, которые представляют собой продукты превращений биологических веществ (например мел).

Происхождение энергии угля, нефти и природного газа

Таким образом, основные природные источники энергии имеют биологическое происхождение и содержат главным образом углерод. В связи с этим естественно возникают различные вопросы. Откуда берется энергия у живых существ? Какую роль играет углерод в энергоносителях? Как происходит накопление энергии в них и ее последующее превращение в тепло или работу? Глубоко не вдаваясь в подробности биологических процессов, можно сказать, что в развитии живого мира решающую роль играют растения. Известно, что растения могут существовать без животных, а животные без растений нет. Значительная часть животных поедает растения, остальные (плотоядные) питаются мясом травоядных (это относится также к человеку). Таким образом, косвенно, они добывают свою пищу также из растительного мира; последний служит не только материалом для строительства тканей тела, но и дает необходимую им энергию. Итак, чтобы узнать происхождение энергии у живых организмов, достаточно исследовать вопрос о происхождении энергии, аккумулированной в растениях.

Вопрос о происхождении вещества, из которых строятся растительные организмы, составляет предмет научного спора уже в течение столетий, поскольку процесс питания растений (в отличие от животных) не поддается непосредственному наблюдению. Только в XIX столетии было окончательно установлено, что растения строят свои организмы-из атмосферного углекислого газа, всасываемой из почвы воды, а также азота, фосфора, серы, калия и других элементов, входящих-в состав неорганических веществ, которыми питаются растения. Углекислый газ и вода, служащие основным питанием растений,- очень простые, энергетически бедные соединения, характеризующиеся низкой химической активностью, тогда как основные соединения растительного (а также животного) происхождения имеют, как правило, очень сложный состав, высокое энергетическое содержание и, при определенных условиях, относительно большую химическую активность. Таким образом, естественно предположить, что построение растительных организмов из природного "сырья" должно происходить под воздействием некоего мощного источника энергии, которая может быть превращена в химическую энергию сложных соединений. Только во второй половине XIX столетия было точно установлено, что источником этой энергии является Солнце (его световая энергия).

Энергия солнечного излучения., ежегодно достигающая Земли, равна 1021 ккал. Большая ее часть превращается в тепло или снова отражается в мировое пространство.

Незначительную часть (сотые доли процента), однако, потребляют растения и с помощью хлорофилла, содержащегося в их зеленых частях, в процессе фотосинтеза строят из углекислого газа, воды и других энергетически бедных веществ сахар, крахмал, глюкозу, протеин, нуклеиновые кислоты, алкалоиды и другие энергетически богатые и сложные по составу соединения. В общих чертах это совершается следующим образом: с помощью поглощаемой хлорофиллом световой энергии химические связи в углекислом газе, воде и других питательных веществах ослабляются или разрываются, временно образуются богатые энергией атомы и радикалы, из которых в ходе различных химических процессов возникают вещества со все более сложными молекулами. Многочисленные атомы связаны в них друг с другом большим числом различных химических связей. Солнечная энергия аккумулируется, таким образом, в виде химической энергии. Схематически реакцию фотосинтеза можно наглядно показать на процессе образования 1 моля глюкозы:

6СО2 + бШО + 674 ккал -> CeffizOs + 6O2.

При фотосинтезе освобождается кислород. Реакции с образованием кислорода называются восстановительными.

Следовательно, живые организмы черпают свою химическую энергию из энергии излучения Солнца. Концентрация солнечной энергии происходит главным образом в углеводах: (соединения состоящие из углерода, водорода и кислорода) глюкоза (СсШгОс), свекловичный сахар (CuHjzO11)i крахмал и целюлоза (CeHioOsJn, где n-переменная величина. В дальнейшем часть углеводов окисляется, при этом, например, из 1моля глюкозы образуются углекислый газ и вода в соответствии со следующей химической реакцией:

СбНпОв + 6О2 -> бСОг + бВЬО + 674 ккал.

Энергия, освобождающаяся при этом из углеводов, идет на построение необходимых для функционирования организма еще более сложных и энергетически богатых соединений (жиров, протеинов, нуклеиновых кислот, алкалоидов и т.д.).Часть этих веществ (прежде всего жиры) окисляется, выделяющаяся при этом энергия концентрируется в организме и идет на покрытие его энергетических потребностей;

В результате окисления сложные органические соединения, полученные в процессе фотосинтеза, снова превращаются в исходные энергетически бедные вещества - углекислый газ и воду. В конечном счете весь растительный организм либо отмирает, либо становится кормом для животных (или людей). Соединения в отмершем организме начинают распадаться и под воздействием микроорганизмов окисляться.

Круговорот углерода, водорода и кислорода

Углерод, водород и кислород совершают, таким образом, круговорот в природе: из энергетически бедных углеродных соединений в живых организмах под воздействием солнечной энергии образуется энергетически более богатые органические соединения, при этом освобождается кислород; затем в ходе длинного ряда сложных превращений при поглощении кислорода вновь образуется углекислый газ и вода и т.д.

Циклический характер химии живого мира, т.е. то обстоятельство, что при распаде снова образуются исходные продукты ("сырье"), чрезвычайно важен, так как в результате этого сырьевой баланс живых организмов никогда не может быть нарушен. Если бы, например? микробы не разлагали отмершие организмы, то жизнь на Земле не могла бы долго продолжаться, так как в этом случае имеющийся в нашем распоряжении запас углерода "за короткий срок" (с геологической точки зрения) осел бы в отмерших организмах. Не следует забывать, что изученная часть Земли (земная кора и воздух) содержит лишь 0,09% углерода.

В течение своего "нормального" круговорота углерод задерживается в живых организмах относительно короткое время (самое большое - несколько сотен лет). Уже здесь он может быть использован: древесина и остальные части растений также являются энергоносителями, используемыми людьми с древнейших времен. С ростом потребности общества в энергии дерево уже не могло больше удовлетворить этой потребности, а стремительное уменьшение лесных массивов привело к настоятельной необходимости использовать вместо дерева другие источники энергии. В XIX столетии быстро возрасло значение каменного угля как источника энергии. Уголь начали добывать уже с ХШ века, но до XIX века его в основном использовали лишь для отопления.

Нарушение круговорота

Каменный уголь фактически образовался вследствие нарушения естественного круговорота углерода, когда распад сложных углеродных соединений живых организмов не дошел до самого низкого энергетического состояния (до углекислого газа), а остановился на промежуточной ступени. Для беспрепятственного круговорота углерода, т.е. полного завершения процесса распада, необходимо столькд кислорода, сколько можно выделить из воздуха. Если же в ходе процесса распада органические вещества были по каким-либо причинам геологического характера лишены доступа воздуха, то течение его изменялось - он значительно замедлялся. В этих условиях вследствие недостатка кислорода окислительные процессы уступали место восстановительным, продукты которых во многом зависят- от физических и химических условий превращения (давление, температура, микроорганизмы и т.д.). При образовании нефти и газа из соединений органического происхождения, состоящих главным образом из углерода, в первую очередь возникают углеводороды, в то время как в ходе образования угля из большей части веществ погибших организмов углерод высвобождается. Как углеводороды, так и элементарный углерод содержат больше химической энергии, чем углекислый газ, поэтому они сжигаются (соединяются с кислородом) с выделением тепла и при этом образуется более бедный энергией углекислый газ:

СН4 + 2О2 -> СО2 + 2Н2О + 210,8 ккал,

СзН8 + 5О2 -> ЗСОг + 4ШО + 526,3 ккал,

С + О2 -» СОг + 94,3 ккал.

Углекислый газ несгораем, он не может при соединении с воздухом (кислородом) высвобождать энергию.

Какое состояние вещества наиболее стабильно?

На первый взгляд может показаться неожиданным, что элементарная форма углерода энергетически не самая бедная, не самая стабильная. Следует отметить, что наиболее стабильными являются такие состояния веществ, при которых в данных условиях их энергия имеет наименьшее значение,

Рассмотрим пример из механики. Пусть в комнате на четвертом этаже шар находится в- устойчивом положении тогда, когда он лежит на полу. На столе или на шкафу состояние шара менее устойчиво: отсюда он может "сам по себе" (без подвода энергии) упасть на пол, причем его потенциальная энергия превращается в кинетическую, а затем при ударе об пол - в тепловую и звуковую. В обратном направлении это процесс "сам по себе" идти не может. Перенести шар на стол или шкаф возможно лишь при затрате определенной энергии. На полу (при условии, что он ровный и строго горизонтальный) шар сам по себе не будет перемещаться, его состояние стабильно. Однако эта стабильность относительна и не означает, что шар больше не обладает потенциальной энергией - ведь он: находится на значительной высотё"над землей. В данном случае имеет место только относительный минимум энергии. При изменении условий может произойти дальнейшее высвобождение потенциальной энергии. Например, если на полу окажется дыра, то шар упадет на этаж ниже, если и здесь будет дыра, то он упадет еще ниже и т.д. Он может достичь таким образом первого этажа, при этом потенциальная энергия шара переходит в другие виды. Стабильность шара даже на первом этаже не абсолютна. При соответствующих условиях он может упасть в подвал или достичь дна глубокой шахты и т.д.

Аналогичная картина наблюдается при превращениях природных энергоносителей, содержащих углерод. В углеродных соединениях органического происхождения накоплено много химической энергии. В ходе химических превращений эта энергия может частично высвобождаться и, будучи преобразованной в другие виды, использоваться. Сами по себе происходят только такие химические превращения, которые связаны с уменьшением свободной энергии, и только они могут быть использованы для получения энергии. Содержание энергии в веществах, образовавшихся в процессе превращения, меньше, чем в исходном веществе, как раз на количество освободившейся энергии. Химические превращения в зависимости от условий происходят быстро или медленно (иногда даже миллионы лет) и идут до тех пор, пока не образуются продукты, энергия которых при данных условиях уже не может уменьшаться (такие продукты будут стабильны).

Если окисление углеродных соединений происходит при наличии достаточного количества воздуха, то возникают соединения, все более богатые кислородом, пока, наконец, углерод не предстанет в форме углекислого газа, а водород - в форме воды. Эти соединения не могут далее окисляться, и из них при обычных условиях не высвобождается химическая энергия. СОг и НгО в естественных условиях предстайляют собой стабильное состояние углерода и водорода. Таким образом, газ и вода -это самые стабильные конечные продукты, которые могут быть превращены в другие вещества только с помощью дополнительной энергии иного происхождения (например солнечной или электрической).

Аккумуляция солнечной энергии

Отдельные.периоды круговорота углерода в природе (образование энергетически богатых углеродных соединений из углекислого газа и воды и их последующий распад на те же соединения) имеют продолжительность от нескольких месяцев до нескольких столетий. Если же обычные условия меняются (как это произошло, например, при образовании нефти, газа и угля), процессы превращения могут протекать исключительно медленно, в течение миллионов лет.

В земной коре без доступа воздуха углеводороды и уголь относительно стабильны, и часть химической энергии в них еще сохранилась в неизменном виде: они как бы законсервировали солнечную энергию. Здесь очевидна аналогия с рассмотренным выше примером с шаром. При изменении условий (извлечении нефти, угля или газа на поверхность земли и их использовании) стабильность состояния этих веществ нарушается: при сгорании они соединяются с кислородом, образуя углекислый газ и воду. На этом круговорот углерода и водорода, нормальный ход которого по геологическим причинам задержался на миллионы лет, быстро заканчивается. При сжиганий освобождается энергия солнечного излучения, которую растения долгое время хранили в себе. Таким образом, нефть, природный газ и каменный уголь - это законсервированная энергия, являющаяся частью когда-то поглащенной солнечной энергии.

Происхождение энергии воды и ветра

Известно, что гидростанции потребляют ту потенциальную энергию воды в реках и водопадах, которая освобождается благодаря естественному перепаду высот. Но вода в своем вечном круговороте попадает на возвышенные участки земли в результате испарения мерей, рек и озер, которое происходит в первую очередь под действием солнечного излучения. Пар, превращаясь в капли воды, собирается в облака или тучи, откуда вода в виде дождя вдш снега попадает обратно на землю, » том числе и на возвышенности. Скапливающаяся здесь вода обладает большим запасом потенциальной энергии, которая затем при помощи турбин,приведенных в действие естественными или искусственно созданными водопадами, может быть превращена в электрическую энергию или механическую работу. Таким образом, большая часть энергии, полученной на гидростанциях, также обязана своим происхождением солнечному излучению. Только незначительная часть энергии, потребляемой при испарении различных, водоемов,- это тепло Земли, которое в свою очередь, освобождается в результате происходящих внутри Земли процессов, радиоактивного распада.

Энергия ветра также в значительной степени обязана своим происхождением Солнцу: разница в нагреве отдельных областей земной поверхности вызывает атмосферные течения (т.е. ветер).

Хорошо ли используется солнечная энергия?

Как мы уже убедились, большая часть нашей потребности в энергии покрывается за счет солнечной энергии. Но к сожалению, живая природа использует эту солнечную энергию недостаточно эффективно.

Солнце излучает ежегодно огромное количество энергии, равное ~ Зх1030ккал, из нее Земли достигает около 1021 ккал. Примерно 60% энергии поглощается воздухом (2,5% ее превращается в энергию ветра); 25,5% достигает водной поверхности, но из этого количества только 0,04% передается воде; очень незначительную часть потребляют водные растения; 14,5% энергии солнечного излучения достигает суши и только 0,12 % ее благодаря растениям превращается в химическую энергию. "Неиспользованная" энергия солнечного излучения Земли переходит обратно в мировое пространство. Земля отдает больше энергии, чем получает от Солнца, так как она излучает еще и энергию, освобождающуюся в результате радиоактивных процессов, происходящих в ее недрах.

Таким образом, растительный и животный мир, включая человека, использует совершенно ничтожную долю солнечной энергии, прпадаю-щей на Землю. Задача будущего - найти и разработать средства и методы, которые помогут человеку более полно использовать эту энергию.

Глубокое проникновение в тайны природы, по-видимому, поможет открыть принципиально новые возможности в этой области.

Один из методов более эффективного использования солнечной энергии, требующий дальнейшей теоретической разработки,-это интенсификация сельского хозяйства за счет лучшей обработки почвы и внесения искусственных удобрений, а также культивирования таких растений, которые более рационально используют эту энергию. Другой метод -создание термо- и фотоэлементов, где происходит непосредственное превращение солнечной энергии в электрическую.

Запасы природных источников энергии

Углерод (как энергоноситель) распределяется на Земле следующим образом: в атмосфере его содержится 640 млрд.т в виде углекислого газа, при этом около 150 млрд.т ежегодно потребляются растениями в процессе фотосинтеза; в растительных организмахзапасено 500 млрд.т, а в животных - 5 млрд.т углерода. Большая часть углерода, содержащегося в живых организмах, после окисления снова поступает в атмосферу в виде углекислого газа. Углерод, не участвующий в окислительных процессах, накоплен в недрах земли в виде торфа (~1000 млрд.т), угля (~ 10000 млрд.т), нефга(~ 20 млрд.т).

Образование нефти, газа и угля - процесс, длившийся много миллионов лет в специфических условиях, которых нет в настоящее время, поэтому в ближайшем будущем нельзя рассчитывать на появление новых месторождений.

Из запасов угля, составляющих около 10000 млрд.т, человечество на сегодняшний день использовало приблизительно 60-70 млрд.т. В настоящее время ежегодная потребность составляет больше 2 млрд.т. Это незначительный расход по сравнению с имеющимися запасами. Такое же положение и с нефтью. Кроме того, благодаря применению новейших методов геологоразведки открываются новые месторождения, однако все они не неисчерпаемы и распоряжаться ими следует разумно. Нужно также учесть, что нефть, природный газ и уголь являются не только источниками энергии, но и важнейшим сырьем для химической промышленности. Из них получают исходные продукты для предприятия органической химии, они служат сырьем для производства искусственных удобрений и взрывчатых веществ, поскольку водород, необходимый для получения аммиака Nffi, основного исходного продукта этих отраслей промышленности, экономичнее всего получать из нефти или газа. Поэтому важнейшей задачей научных и прикладных исследований является разработка новых методов получения энергии, что позволит передать нефть и газ химической промышленности.

Итак, почти во всех природных источниках энергии в основном запасена энергия Солнца. Можно сказать, что в настоящее время каждая электростанция-или двигатель питаются фактически ею. Исключением являются атомные электростанции, однако в общем производстве электроэнергии они пока играют ничтожную роль. Но и атомная энергия косвенным образом связана с солнечным излучением, так как образование урана, как и других химических элементов, связано с Солнцем, с возникновением Солнечной системы.

- 165.93 Кб

Природные источники углеводородов

Нефть, газ и каменный уголь

11.11.2011

МОУ ПСШ№1

Отинова Валентина Андреевна 10(4)кл

1. Нефть

a) Физические свойства:

фракционная перегонка

б) Химические свойства:

крекинг, термический, каталитический крекинг

в) Получение

г) Применение

2. Газ

a) Получение

б) Применение

3. Каменный уголь

a) Каменный уголь, коксование

б) Применение

Заключение

Нефть

Физические свойства

Нефть – это маслянистая горючая жидкость, обладающая специфическим

запахом, обычно коричневого цвета с зеленоватым или другим оттенком,

иногда почти черная, очень редко бесцветная.

Главнейшим свойством нефти, принесшим им мировую славу исключительных

энергоносителей, является их способность выделять при сгорании значительное

количество теплоты. Нефть и ее производные обладают наивысшей среди всех

видов топлив теплотой сгорания. Теплота сгорания нефти – 41 МДж/кг, бензина

– 42 МДж/кг. Важным показателем для нефти является температура кипения,

которая зависит от строения входящих в состав нефти углеводородов и

колеблется от 50 до 550°С.

Нефть, как и любая жидкость, при определенной температуре закипает и

переходит в газообразное состояние. Различные компоненты нефти переходят в

газообразное состояние при различной температуре. Так, температура кипения

метана –161,5°С, этана –88°С, бутана 0,5°С, пентана 36,1°С. Легкие нефти

кипят при 50–100°С, тяжелые – при температуре более 100°С.

Нефть можно разделить на ее составляющие, для этого ее очищают от механических примесей или подвергают так называемой фракционной перегонке.

Фракционная перегонка - физический способ разделения смеси компонентов с различными температурами кипения.

Перегонка осуществляется в специальных установках – ректификационных колоннах, в которых повторяют цикл конденсации и испарения жидких веществ, содержащихся в нефти.

Схема промышленной установки непрерывной перегонки нефти

В ректификационную колонну поступает нефть, нагретая в трубчатой печи до температуры 320-350 °С. Ректификационная колонна имеет горизонтальные перегородки с отверстиями - так называемые тарелки, на которых происходит конденсация фракции нефти.

В процессе ректификации нефти разделяется на следующие фракции:

  • Ректификационные газы – смесь низкомолекулярных углеводородов(пропан, бутан)
  • Газолиновая фракция (бензин) углеводороды от C 5 H 12 – С 11 H 24
  • Лигроиновая фракция – углеводороды от C 8 H 18 – C 14 H 30
  • Керосиновая фракция – углеводороды от C 12 H 26 – C 18 H 38
  • Дизельное топливо – углеводороды от C 13 H 28 – C 19 H 36

Остаток перегонки нефти – мазут – содержит углеводороды с числом атомов углерода от 18 до 50. Перегонкой при пониженном давлении из мазут получают соляровое масло (C 18 H 28 - C 25 H 52), смазочные масла(C 28 H 58 – C 38 H 78), вазелин и парафин – легкоплавкие смеси твердых углеводородов. Твердый остаток перегонки мазута – гудрон и продукты его переработки – битум и асфальт используют для изготовления дорожных покрытий.

Химические свойства

Нефти состоят главным образом из углерода – 79,5 – 87,5 % и водорода –

11,0 – 14,5 % от массы нефти. Кроме них в нефтях присутствуют еще три

элемента – сера, кислород и азот. Их общее количество обычно составляет 0,5

– 8 %. В незначительных концентрациях в нефтях встречаются элементы:

ванадий, никель, железо, алюминий, медь, магний, барий, стронций, марганец,

хром, кобальт, молибден, бор, мышьяк, калий и др. Их общее содержание не

превышает 0,02 – 0,03 % от массы нефти. Указанные элементы образуют

органические и неорганические соединения, из которых состоят нефти.

Кислород и азот находятся в нефтях только в связанном состоянии. Сера может

встречаться в свободном состоянии или входить в состав сероводорода.

В результате полученные ректификации нефти продукты подвергаются химической переработке, включающий ряд сложных процессов. Один из них – крекинг нефтепродуктов.

Крекинг – термическое разложение нефтепродуктов, приводящее к образованию углеводородов с меньшим числом атомов углерода в молекуле.

Существуют несколько видов крекинга: термический, каталитический крекинг, крекинг высокого давления, восстановительный крекинг.

Термический крекинг – расщепление молекул углеводородов с длинной углеродной цепью на более короткие под действием высокой температуры(470-550°С). Алканы распадаются за счет разрыва связей С–С (более прочные связи С–Н при такой температуре сохраняются) и образуются алканы и алкены с меньшим числом углеродных атомов.

Например:

C 6 H 14 C 2 H 6 + C 4 H 8

В общем виде это процесс можно выразить схемой:

C n H 2n+2 C n-k H 2(n-k)+2 + C k H 2k

При обычном термическом крекинге образуется много низкомолекулярных газообразных углеводородов, которые используют как сырье для получения спиртов, карбоновых кислот, высокомолекулярных соединений (полиэтилен).

Каталитический крекинг происходит в присутствии катализаторов, в качестве которых используют природные алюмосиликаты состава n Al 2 O 3 * m SiO 2 при температуре 500°С. Осуществление крекинга с применением катализаторов приводит к образованию углеводородов, имеющих разветвленную или замкнутую цепь атомов углерода в молекуле.

Крекинг нефтепродуктов протекает при высоких температурах, поэтому часто образуется нагар (сажа), загрязняющий поверхность катализатора, что резко снижает его активность. Очистка от нагара – его регенерация – основное условие практического осуществления каталитического крекинга. Наиболее простым способ регенерации катализатора является его обжиг, при котором происходит окисление нагара кислородом воздуха.

Каталитический крекинг – гетерогенный процесс, в котором участвуют твердое (катализатор) и газообразные (пары углеводородов) вещества. Гетерогенные реакции (газ – твердое вещество) протекают быстрее при увеличении площади поверхности твердого вещества. Поэтому катализатор измельчают, а его регенерацию и крекинг углеводородов ведут в «кипящем слое», знакомом вам по производству серной кислоты.

Сырье для крекинга, например газойль, поступает в реактор(схема). Нижняя часть реактора имеет меньший диаметр, поэтому скорость потока паров сырья весьма высока. Движущийся с большой скоростью газ захватывает частицы катализатора и уносит их в верхнюю часть реактора, где из-за увеличения его диаметра скорость потока понижается. Под действием силы тяжести частицы катализатора падают в нижнюю, более узкую часть реактора, откуда вновь выносятся вверх. Таким образом, каждая крупинка катализатора находится в постоянном движении и со всех сторон омывается газообразным реагентом.

Схема установки каталитического крекинга в кипящем слое

Некоторые зерна катализатора попадают во внешнюю, более широкую часть реактора и, встречая сопротивления потока газа, опускаются в нижнюю часть, где подхватываются потоком газа и уносятся в регенератор. Использование катализаторов крекинга позволяет несколько увеличить скорость реакции, уменьшить ее температуру, повысить качество продуктов крекинга.

Полученные углеводороды бензиновой фракции в основном имеют линейное строение, приводит к невысокой детонационной устойчивости полученного бензина.

Получение

Месторождение нефти содержит, большие скопления попутного нефтяного газа, который собирается над нефтью в земной коре и частично растворяется в ней под давлением вышележащих пород. Попутный нефтяной газ, как и нефть, является ценным природным источником углеводородов. По составу попутный нефтяной газ значительно беднее нефти. Попутный нефтяной газ по сравнению с природным более богат по составу различными углеводородами. Разделяя их на фракции, получают:

  • Газовый бензин (пентан и гексан);
  • Пропан - бутановую смесь (пропан и бутан);
  • Сухой газ (метан и этан).

Применение

Газовый бензин используют в качестве топлива для двигателей внутреннего сгорания и так же добавкой к моторному топливу, для облегчения запуска двигателей в зимних условиях. Пропан - бутановую смесь применяют как бытовое топливо и для заполнения зажигалок. Сухой газ широко используют в качестве топлива. Нефтяной газ используется в качестве сырья для химических производств. Из алканов в ходящий в состав попутного нефтяного газа, получают водород, ацетилен, непредельные и ароматические углеводороды и их производные. Газообразные углеводороды могут образовывать самостоятельные скопления – месторождение природного газа.

Природный газ

Природный газ – смесь газообразных предельных углеводородов с не большой молекулярной массой. Основным компонентом газа является метан, доля которого в зависимости от месторождения составляет от 75 до 99% по объему. Так же в природный газ входят этан, пропан, бутан, изобутан, азот и углекислый газ.

Получение

Месторождения природного газа находятся в пористых горных породах, образовавшихся в результате тектонических сдвигов. Слои, покрывающие эти породы, не пропускают газ. Состав природного газа существенно отличается от одного месторождения к другому. Поэтому перед использованием природный газ должен проходить обработку, позволяющую удалить ненужные компоненты, например, сернистокислую соль, воду и т.д. Обработка, как правило, осуществляется на месте добычи. При этом особую сложность представляет удаление серных соединений, поскольку при их сжигании выделяется токсичный сернистый газ (SO 2).

Применение

Природный газ используется как топливо, и в качестве сырья для получения разнообразных органических и неорганических веществ. Из метана получают водород, ацетилена и метилового спирта, формальдегид и муравьиную кислоту. В качестве топлива природный газ используют на электростанциях, в котельных системах водяного отопления жилых домов и промышленных зданий, в доменном и мартеновском производствах. Ценность природного газа как горючего состоит еще и в том, что это экологически чистое минеральное топливо. При его сгорании образуется гораздо меньше вредных веществ по сравнению с другими видами топлива. Поэтому природный газ является одним из главных источников энергии в человеческой деятельности.

В химической промышленности природный газ используется как сырьё для получения различных органических веществ, например, пластмасс, каучука, спирта, органических кислот. Именно использование природного газа помогло синтезировать многие химические вещества, не существующие в природе, например, полиэтилен.

Каменный уголь

Каменный уголь - осадочная порода, представляющая собой продукт глубокого разложения остатков растений (древовидных папоротников, хвощей и плаунов, а также первых голосеменных растений). Каменный уголь состоит из органических и неорганических веществ, например, как вода, аммиак, сероводород и углерод - уголь.

Коксование – способ переработки каменного угля, прокаливание без доступа воздуха. При температуре около 1000°С, в результате коксования образуются:

Краткое описание

Нефть – это маслянистая горючая жидкость, обладающая специфическим
запахом, обычно коричневого цвета с зеленоватым или другим оттенком,
иногда почти черная, очень редко бесцветная.

Размышления о том, что ждет нас в будущем и раньше не давало покоя ученым. Сегодня на эту тему говорят все: от государственных руководителей до школьников. Глобальное потепление, таяние вековых льдов, демографические проблемы, клонирование человека, современные и будущие средства связи и передвижения, зависимость людей от энергоносителей… И все-таки одной из наиболее популярных сегодня тем является вопрос альтернативного топлива.

Топливо будущего - альтернатива природным ископаемым

Природные виды топлива в настоящее время являются нашим основным источником энергии. Углеводороды сжигают, чтобы разрушить молекулярные связи и освободить их энергию. Высокий уровень потребления ископаемых видов топлива приводит к значительному загрязнению природной среды, когда они сжигаются.
Мы живем в 21 веке, это время новых технологий, и многие ученые считают, что пришло время для создания альтернативного топлива будущего, которое способно заменить традиционное топливо и ликвидировать нашу зависимость от него. За последние 150 лет, использование углеводородов увеличило количество углекислого газа в атмосфере на 25%. Сжигание углеводородов приводит и к другим видам загрязнения, таким как смог, кислотные дожди и загрязнение воздуха. Этот тип загрязнения не только наносит вред окружающей среде, здоровью животных и людей, но, кроме того, приводит к войнам, так как ископаемые виды топлива являются не возобновляемыми ресурсами и, в конечном счете, закончатся. На данный момент важно найти новые решения и установить альтернативные источники топлива для будущего.

Пока одни ученые решают вопрос увеличения коэффициента нефтеотдачи продуктивных пластов, а другие ищут пути получения газообразного топлива из горючих сланцев, третьи пришли к выводу, что потребность в топливе можно удовлетворить обычным дедовским методом. Речь идет о "твердых нефтепродуктах", природном топливе - дровах. Идею "старую как мир" подхватили специалисты Стэнфордского университета в США, к ним присоединились и ученые университета штата Джорджия. Конечно, здесь нужны особые быстрорастущие сорта деревьев типа ольхи или платанов, которые дают до 40 т древесины с 1 га в год.

Платан - Platanus - могучее дерево с густой раскидистой кроной и толстым стволом - родоначальник обширного семейства платановых. Всео насчитывается в роду платанов около 10 видов. Высота платана достигает 60м, а длина окружности ствола - до 18м! Ствол платана ровной цилиндрической формы, кора зеленовато - серого цвета, отслаивающаяся. Листья платана пальчато-лопастные, с удлиненными черешками.

После вырубки деревьев платанов на земле остается листва, которую можно использовать для природного удобрения. Древесина платана измельчается в дробилках и подается в топку электростанций. Участок насаждения платанов в 125 км2 может обеспечить энергией город с населением 80 тыс. человек. На вырубленных площадях уже через 2-4 года из побегов вновь вырастут новые деревья платаны, пригодные для топлива. Ученые посчитали, что если 3 % территории России и Украины отвести под „энергетические плантации платанов" для выращивания природного топлива, то страны могли бы полностью удовлетворить свои потребности в топливе за счет дров.

Главным преимуществом использования "выращенного природного топлива", в противоположность "ископаемому топливу" (каменный уголь, природный газ и нефть) является то, что в процессе роста энергетический лес платанов адсорбирует углекислый газ, который позже высвобождается при его горении. Это значит, что при сжигании платанов в атмосферу выбрасывается такое количество СО2, которое поглощалось платаном во время его роста. При сжигании же ископаемого топлива, мы увеличиваем содержание СО2 в атмосфере, а это главная причина глобального потепления.

Новое топливо перспективно как ценный возобновляемый источник энергии и это будет более важным в будущем. Уже сегодня, например, крупнейшая в Европе электростанция на платане, находится в Зиммеринге (Австрия). Ее мощность 66 МВт,при ежегодном потреблении 190 тысяч тонн платана, выращиваемом здесь же в радиусе 100 км. А в Германии мощность энергетических лесов достигает 20 миллионов кубометров древесины в год.

Новые виды топлива

Американским сторонникам „дровенизации" бытовой теплоэнергетики вторят их коллеги из Европы. В Бельгии, например, в 1988г газета „Саар" напечатала статью, где назвала дрова природным топливом будущего, как альтернативу применения нефтепродуктов. Для этих же целей предлагается использовать и макулатуру. Там в магазинах уже продается ручной пресс для изготовления брикетов из макулатуры, не уступающие по своей калорийности буроугольным.

Также можно купить специальные экономичные печи, работающие по принципу газогенератора, конструкция которых препятствует уходу тепла через дымовую трубу. Дрова и брикеты макулатуры сгорают в этой печи очень медленно: вязанка - за 8 ч. При этом дрова сгорают полностью, отсутствует выделение в атмосферу золы и сажи. Отапливание помещений такими печами очень выгодно, ведь килограмм дров при сравнимой калорийности стоит в 10 раз меньше литра жидкого топлива, для хранения которого еще и требуются специальные емкости топлива .

В нимание другой группы американских ученых привлекли быстрорастущие бурые водоросли. Морские насаждения предлагается перерабатывать в газообразный метан с помощью бактерий. Также возможно получение нефтеподобные веществ путем нагревания. По расчетам, природная ферма в океане площадью насаждений 40 тыс. га сможет в будущем снабжать энергией город с населением 50 тыс. человек. Ученые из Франции предлагают использовать в качестве альтернативного топлива одноклеточные водоросли. Оказывается, эти микроскопические организмы выделяют углеводороды в процессе своей жизнедеятельности. Выращивая водоросли в специальных емкостях и снабжая их углекислым газом и минеральными солями, можно регулярно „собирать урожай углеводородов" и получать природное топливо.

Естественные природные „бензоколонки АЗС" обнаружены и в тропиках Южной Америки, на Филиппинах. Некоторые виды лиан и тропических деревьев содержат природное топливо - "солярку", которую даже не надо подвергать перегонке. Альтернативное топливо из лиан прекрасно горит в автомобильных моторах, давая менее токсичный выхлоп, чем бензин. Подходит для производства топ-лива и пальмовое масло, из которого сравнительно легко можно получать „солярку".

Но пока это все в области научной фантастики. Более реален проект получения синтетического топлива из древесного угля. Довольно простой метод разработан учеными США. Уголь измельчается, обрабатывается растворителем, и в полученную смесь добавляется водород. Из тонны угля получается почти 650 л синтетического топлива, из которой можно вырабатывать синтетический бензин.

Ученые США всерьез занялись подземной газификацией угольных пластов. Методом пиролиза из него получают 40 % метанового газа, 45 % кокса и 3 % жидкого топлива. Специалистами разработан совсем неожиданный способ получения топлива будущего... из мусора. Из отходов жизнедеятельности человека предварительно извлекают магнитные и немагнитные металлы, которые вдальнейшем отправляют в переплавку. Новая технология переработки отходов стекла позволяет получить из осколков стекло более дешевое и более высокого качества, чем исходное сырье. Остатки мусора перерабатываются в кокс, метановый газ и жидкое топливо. „Мусорные" нефтепродукты испытывали на опытных установках - горят прекрасно. Из тонны мусора таким способом „добывают" от 6 до 20 долларов. В 1976 - 1977 гг. в Сан-Диего вступил в строй специальный завод для переработки мусора.

Однако, над подобной проблемой успешно работают и в Великобритании. Здесь разработана и в натоящее время работает установка переработки мусора, в которой под действием высоких температур при сгорании вдуваемого кислорода из мусора (пластмассовые упаковки и бутылки, пищевые отбросы, обрывки газет, тряпки и т.д.) получают синтетические нефтепродукты и метановый газ с водородом. Жидкое синтетическое топливо и газ предполагают хранение в резервуарах и использовать частично для работы дизеля, а частично для переплавки битого стекла, из которого можно получать строительные блоки. В будущем планируется переработка мусора в старых доменных печах. Это даст высокую производительность, экономию времени и средств на постройку новых мусоросжигающих заводов. Как показали эксперименты, в дело пойдет и остающийся шлак - он пригоден для замены гравия при выполнении бетонных работ .

А вот еще два способа получения синтетического бензина. Французский инженер А. Ротлисберже получил альтернативный бензин из сухих стеблей кукурузы. Автор утверждает, что новое топливо будущего с октановым числом 98 вполне можно добывать из соломы, опилок, ботвы овощей и других отходов, содержащих целлюлозные волокна. Под нажимом правительственных структур изобретатель засекретил технологию синтеза нового топлива, но известно, что качество нового бензина во многом зависит от сложных стабилизирующих добавок, вводимых в спирты и изопропиниловые эфиры, получаемые из целлюлозы. Новое альтернативное топливо не детонирует, сгорает без дыма и запахов. Его можно смешивать в любых пропорциях с обычным бензином. При этом в будущем, конструктивных изменений в двигателях не требуется. Франция намерена со временем довести производство нового бензина до 20 млн.т в год.

Еще один изобретатель искусственного бензина живет в Швейцарии. Исходным материалом служит щепа, кукурузная шелуха, полиэтиленовые пакеты. Да вот беда, „бензин будущего" пахнет самогоном. Изобретателю приходится платить 8 % налога как за изготовление алкогольных напитков. Тем не менее 1 л искусственного „бензина будущего" стоит в 2 раза дешевле настоящего, а автомобиль работает исправно, как новый.

Разработки изобретателей не ограничиваются только искусственным бензином, предлагаются оригинальные методы получения углеводородного газа для бытовых целей. Один из которых разработан в Германии. В качестве нового источника альтернативной энергии будущего выступает свалка мусора в пригородном местечке Шверборн. При заполнении свалки под ней заложили сеть газовых колодцев и трубопроводов. Оказывается, 1 кг мусора дает до 200 л газа, из которого 100 литров - метан. Пока на свалке "добывают" в час 40 м3 газа.
Новое топливо отапливает производственные помещения. Планируется сооружение теплоцентрали на альтернативном топливе для отопления поселка. По расчетам, затраты на получение альтернативного топлива окупятся за 3,5 года.

Второй способ еще более неожиданный. С предложением выступили власти г. Оттапалам в штате Керала (Индия). Рецепт нового топлива следующий: Колодец заполняется коровьим навозом и герметично закрывается. Образующийся при брожении газ по подсоединенным трубам отводится к газовым плитам в домах. Такая биогазовая установка полностью удовлетворяет потребность семьи в биоэнергии для домашнего пользования. Сегодня в Индии разработаны и применяются 53 модели биогазовых систем. Ими эффективно пользуются около 3,5 млн. семей. Правительство страны активно поддерживает распространение биогазовых установок. Уже сейчас за счет этого экономится около 1,2 млрд. рупий в год.

Солнечная энергия - технология будущего

В начале статьи мы упоминали различные новые технологии получения энергии. Фотоэлектрические системы (или солнечные батареи) – это еще одна «технология будущего», применяющаяся уже сегодня.

Сейчас многие используют солнечные батареи в качестве основного или резервного источника электроэнергии для жилых домов и офисных зданий. Если вы недавно были на море, то могли заметить, что в навигационных буях также применяют энергию солнечных батарей. Уже давно они «взяты на вооружение» военными: во время операции «Буря в пустыне» полевые радиостанции были оснащены облегченными солнечными батареями ECD.

В будущем масштабы использования солнечных батарей будут только расти. Недавно компания ECD, в сотрудничестве с Texaco, предложила технологию использования энергии солнца для электроснабжения нефтедобывающего оборудования на нефтяном месторождении площадью двести гектаров в Бейкерсфилде (штат Калифорния). Ранее для добычи трех баррелей нефти один сжигали в парогенераторе. Использование солнечной энергии не только приведет к снижению расхода невосполнимых ресурсов, но и уменьшит вредные выбросы и шум.

Наиболее важными источниками углеводородов являются природный и попутные нефтяные газы, нефть, каменный уголь.

По запасам природного газа первое место в мире принадлежит нашей стране. В природном газе содержатся углеводороды с низкой молекулярной массой. Он имеет следующий примерный состав (по объему): 80–98 % метана, 2–3 % его ближайших гомологов – этана, пропана, бутана и небольшое количество примесей – сероводорода Н 2 S, азота N 2 , благородных газов, оксида углерода(IV) CO 2 и паров воды H 2 O. Состав газа специфичен для каждого месторождения. Существует следующая закономерность: чем выше относительная молекулярная масса углеводорода, тем меньше его содержится в природном газе.

Природный газ широко используется как дешевое топливо с высокой теплотворной способностью (при сжигании 1м 3 выделяется до 54 400 кДж). Это один из лучших видов топлива для бытовых и промышленных нужд. Кроме того, природный газ служит ценным сырьем для химической промышленности: получения ацетилена, этилена, водорода, сажи, различных пластмасс, уксусной кислоты, красителей, медикаментов и других продуктов.

Попутные нефтяные газы находятся в залежах вместе с нефтью: они растворены в ней и находятся над нефтью, образуя газовую “шапку”. При извлечении нефти на поверхность газы вследствие резкого падения давления отделяются от нее. Раньше попутные газы не находили применения и при добыче нефти сжигались факельным способом. В настоящее время их улавливают и используют как топливо и ценное химическое сырье. В попутных газах содержится меньше метана, чем в природном газе, но больше этана, пропана, бутана и высших углеводородов. Кроме того, в них присутствуют в основном те же примеси, что и в природном газе: H 2 S, N 2 , благородные газы, пары Н 2 О, CO 2 . Из попутных газов извлекают индивидуальные углеводороды (этан, пропан, бутан и т.д.), их переработка позволяет получать путем дегидрирования непредельные углеводороды – пропилен, бутилен, бутадиен, из которых затем синтезируют каучуки и пластмассы. Смесь пропана и бутана (сжиженный газ) применяют как бытовое топливо. Газовый бензин (смесь пентана с гексаном) применяют как добавку к бензину для лучшего воспламенения горючего при запуске двигателя. Окислением углеводородов получают органические кислоты, спирты и другие продукты.

Нефть – маслянистая горючая жидкость темно-бурого или почти черного цвета с характерным запахом. Она легче воды ( = 0,73–0,97 г/ см 3), в воде практически нерастворима. По составу нефть – сложная смесь углеводородов различной молекулярной массы, поэтому у нее нет определенной температуры кипения.

Нефть состоит главным образом из жидких углеводородов (в них растворены твердые и газообразные углеводороды). Обычно это алканы (преимущественно нормального строения), циклоалканы и арены, соотношение которых в нефтях различных месторождений колеблется в широких пределах. Уральская нефть содержит больше аренов. Кроме углеводородов, нефть содержит кислородные, сернистые и азотистые органические соединения.



Сырая нефть обычно не применяется. Для получения из нефти технически ценных продуктов ее подвергают переработке.

Первичная переработка нефти заключается в ее перегонке. Перегонку производят на нефтеперерабатывающих заводах после отделения попутных газов. При перегонке нефти получают светлые нефтепродукты:

бензин (t кип = 40–200 °С) содержит углеводороды С 5 –С 11 ,

лигроин (t кип = 150–250 °С) содержит углеводороды С 8 –С 14 ,

керосин (t кип = 180–300 °С) содержит углеводороды С 12 –С 18 ,

газойль (t кип > 275 °С),

а в остатке – вязкую черную жидкость – мазут.

Мазут подвергают дальнейшей переработке. Его перегоняют под уменьшенным давлением (чтобы предупредить разложение) и выделяют смазочные масла: веретенное, машинное, цилиндровое и др. Из мазута некоторых сортов нефти выделяют вазелин и парафин. Остаток мазута после отгонки – гудрон – после частичного окисления применяется для получения асфальта. Главный недостаток перегонки нефти – малый выход бензина (не более 20 %).

Продукты перегонки нефти имеют различное применение.

Бензин в больших количествах используется как авиационное и автомобильное топливо. Он состоит обычно из углеводородов, содержащих в молекулах в среднем от 5 до 9 атомов С. Лигроин применяется как горючее для тракторов, а также как растворитель в лакокрасочной отрасли промышленности. Большие количества его перерабатывают в бензин. Керосин применяется как горючее для тракторов, реактивных самолетов и ракет, а также для бытовых нужд. Соляровое масло – газойль – используется как моторное топливо, а смазочные масла – для смазки механизмов. Вазелин используется в медицине. Он состоит из смеси жидких и твердых углеводородов. Парафин применяется для получения высших карбоновых кислот, для пропитки древесины в производстве спичек и карандашей, для изготовления свечей, гуталина и т.д. Он состоит из смеси твердых углеводородов. Мазут помимо переработки на смазочные масла и бензин используется в качестве котельного жидкого топлива.

При вторичных методах переработки нефти происходит изменение структуры углеводородов, входящих в ее состав. Среди этих методов большое значение имеет крекинг углеводородов нефти, проводимый с целью повышения выхода бензина (до 65–70 %).

Крекинг – процесс расщепления углеводородов, содержащихся в нефти, в результате которого образуются углеводороды с меньшим числом атомов С в молекуле. Различают два основных вида крекинга: термический и каталитический.

Термический крекинг проводится при нагревании исходного сырья (мазута и др.) при температуре 470–550 °С и давлении 2–6 МПа. При этом молекулы углеводородов с большим числом атомов С расщепляются на молекулы с меньшим числом атомов как предельных, так и непредельных углеводородов. Например:

(радикальный механизм),

Таким способом получают главным образом автомобильный бензин. Выход его из нефти достигает 70 %. Термический крекинг открыт русским инженером В.Г.Шуховым в 1891 г.

Каталитический крекинг проводится в присутствии катализаторов (обычно алюмосиликатов) при 450–500 °С и атмосферном давлении. Этим способом получают авиационный бензин с выходом до 80 %. Такому виду крекинга подвергается преимущественно керосиновая и газойлевая фракции нефти. При каталитическом крекинге наряду с реакциями расщепления протекают реакции изомеризации. В результате последних образуются предельные углеводороды с разветвленным углеродным скелетом молекул, что улучшает качество бензина:

Бензин каталитического крекинга обладает более высоким качеством. Процесс его получения протекает значительно быстрее, с меньшим расходом тепловой энергии. К тому же при каталитическом крекинге образуется относительно много углеводородов с разветвленной цепью (изосоединений), представляющих большую ценность для органического синтеза.

При t = 700 °С и выше происходит пиролиз.

Пиролиз – разложение органических веществ без доступа воздуха при высокой температуре. При пиролизе нефти основными продуктами реакции являются непредельные газообразные углеводороды (этилен, ацетилен) и ароматические – бензол, толуол и др. Поскольку пиролиз нефти – один из важнейших путей получения ароматических углеводородов, то этот процесс часто называют ароматизацией нефти.

Ароматизация – превращение алканов и циклоалканов в арены. При нагревании тяжелых фракций нефтепродуктов в присутствии катализатора (Pt или Mo) углеводороды, содержащие 6–8 атомов С в молекуле, превращаются в ароматические углеводороды. Эти процессы протекают при риформинге (облагораживание бензинов).

Риформинг – это ароматизация бензинов, осуществляемая в результате нагревания их в присутствии катализатора, например Pt. В этих условиях алканы и циклоалканы превращаются в ароматические углеводороды, вследствие чего октановое число бензинов также существенно повышается. Ароматизацию применяют для получения индивидуальных ароматических углеводородов (бензола, толуола) из бензиновых фракций нефти.

В последние годы углеводороды нефти широко используются как источник химического сырья. Различными способами из них получают вещества, необходимые для производства пластмасс, синтетического текстильного волокна, синтетического каучука, спиртов, кислот, синтетических моющих средств, взрывчатых веществ, ядохимикатов, синтетических жиров и т.д.

Каменный уголь так же, как природный газ и нефть, является источником энергии и ценным химическим сырьем.

Основной метод переработки каменного угля – коксование (сухая перегонка). При коксовании (нагревании до 1000 °С – 1200 °С без доступа воздуха) получаются различные продукты: кокс, каменноугольная смола, надсмольная вода и коксовый газ (схема).

Схема

Кокс используют в качестве восстановителя при производстве чугуна на металлургических заводах.

Каменноугольная смола служит источником ароматических углеводородов. Ее подвергают ректификационной перегонке и получают бензол, толуол, ксилол, нафталин, а также фенолы, азотсодержащие соединения и др. Пек – густая черная масса, оставшаяся после перегонки смолы, используется для приготовления электродов и кровельного толя.

Из надсмольной воды получают аммиак, сульфат аммония, фенол и др.

Коксовый газ применяют для обогревания коксовых печей (при сгорании 1м 3 выделяется около 18000 кДж), но в основном его подвергают химической переработке. Так, из него выделяют водород для синтеза аммиака, используемого затем для получения азотных удобрений, а также метан, бензол, толуол, сульфат аммония, этилен.

Основными природными источниками углеводородов являются нефть, природный и попутный нефтяной газы и каменный уголь.

Природный и попутный нефтяной газы.

Природный газ – смесь газов, основным компонентом которой является метан, остальное приходится на долю этана, пропана, Бутана, и небольшого количества примесей – азота, оксида углерода (IV), сероводорода и паров воды. 90% его расходуется в качестве топлива, остальные 10% используют как сырье для химической промышленности: получение водорода, этилена, ацетилена, сажи, различный пластмасс, медикаментов и др.

Попутный нефтяной газ – это тоже природный газ, но он встречается вместе с нефтью – находится над нефтью или растворен в ней под давлением. Попутный газ содержит 30 – 50% метана, остальная часть приходится на его гомологи: этан, пропан, бутан и другие углеводороды. Кроме того, в нем присутствуют те же примеси, что и в природном газе.

Три фракции попутного газа:

  1. Газовый бензин; его добавляют к бензину для улучшения запуска двигателя;

  2. Пропан-бутановая смесь; применяется как бытовое топливо;

  3. Сухой газ; используют для получения ацителена, водорода, этилена и других веществ, из которых в свою очередь производят каучуки, пластмассы, спирты, органические кислоты и т.д.

Нефть.

Нефть – маслянистая жидкость от желтого или светло-бурого до черного цвета с характерным запахом. Она легче воды и в ней практически нерастворима. Нефть представляет собой смесь примерно 150 углеводородов с примесями других веществ, поэтому у нее нет определенной температуры кипения.

90% добываемой нефти используется как сырье для производства различных видов топлива и смазочных материалов. В то же время нефть – ценное сырье для химической промышленности.

Нефть, добываемую из земных недр, называю сырой. В сыром виде нефть не применяют, ее подвергают переработке. Сырую нефть очищают от газов, воды и механических примесей, а затем подвергают фракционной перегонке.

Перегонка – процесс разделения смесей на отдельные компоненты, или фракции, на основании различия их температур кипения.

При перегонке нефти выделяют несколько фракций нефтепродуктов:

  1. Газовая фракция (tкип = 40°С) содержит нормальные и разветвленные алканы СН4 – С4Н10;

  2. Бензиновая фракция (tкип = 40 - 200°С) содержит углеводороды С 5 Н 12 – С 11 Н 24 ; при повторной перегонке из смеси выделяют легкие нефтепродукты, кипящие в более низких интервалах температур: петролейный эфир, авиационный и автомобильный бензин;

  3. Лигроиновая фракция (тяжелый бензин, tкип = 150 - 250°С), содеожит углеводороды состава С 8 Н 18 – С 14 Н 30 , применяют в качестве горючего для тракторов, тепловозов, грузовых автомобилей;

  4. Керосиновая фракция (tкип = 180 - 300°С) включает углеводороды состава С 12 Н 26 - С 18 Н 38 ; ее используют в качестве горючего для реактивных самолетов, ракет;

  5. Газойль (tкип = 270 - 350°С) используют как дизельное топливо и в больших масштабах подвергается крекингу.


После отгонки фракций остается темная вязкая жидкость – мазут. Из мазута выделяют соляровые масла, вазелин, парафин. Остаток от перегонки мазута – гудрон, его применяют при производстве материалов для дорожного строительства.

Вторичная переработка нефти основана на химических процессах:

  1. Крекинг – расщепление крупных молекул углеводородов на более мелкие. Различают термический и каталитический крекинг, который более распространен в настоящее время.

  2. Риформинг (ароматизация) - это превращение алканов и циклоалканов в ароматические соединения. Этот процесс осуществляют путем нагревания бензина при повышенном давлении в присутствии катализатора. Риформинг применяют для получения из бензиновых фракций ароматических углеводородов.

  3. Пиролиз нефтепродуктов проводят нагреванием нефтепродуктов до температуры 650 - 800°С, основными продуктами реакции являются непредельные газообразные и ароматические углеводороды.

Нефть – сырье для производства не только топлива, но и многих органических веществ.

Каменный уголь.

Каменный уголь так же является источником энергии и ценным химическим сырьем. В состав каменного угля в основном органические вещества, а также вода, минеральные вещества, при сжигании образующие золу.

Одним из видов переработки каменного угля является коксование – это процесс нагревания угля до температуры 1000°С без доступа воздуха. Коксование угля проводят в коксовых печах. Кокс состоит из практически чистого углерода. Его используют в качестве восстановителя при доменом производстве чугуна на металлургических заводах.

Летучие вещества при конденсации каменноугльную смолу (содержит много различных органических веществ, из них большая часть – ароматические), аммиачную воду (содержит аммиак, соли аммония) и коксовый газ (содержит аммиак, бензол, водород, метан, оксид углерода (II), этилен, азот и другие вещества).