Приборы дозиметрического контроля: виды, общие характеристики, принцип работы. Как проводится дозиметрический контроль потребительских товаров Дозиметрический контроль может быть

КОНТРОЛЬНЫЕ ВОПРОСЫ:

1. Виды радиационного дозиметрического контроля.

2. Объекты и задачи радиационного дозиметрического контроля.

3. Методы дозиметрии ионизирующих излучений:

Ионизационные методы;

Сцинтилляционные методы;

Люминесцентные методы.

ОБЪЕМ САМОСТОЯТЕЛЬНОЙ РАБОТЫ:

1. Ознакомиться с устройством и правилами работы приборов СРП-68-01, СРП-88Н, ДБГ-01-Н.

2. Обнаружить источник ионизирующего излучения.

3. Измерить радиационный фон в учебной комнате и на территории, прилегающей к учебному корпусу.

Радиационный дозиметрический контроль охватывает все виды воздействия ионизирующего излучения на человека и является неотъемлемой частью системы радиационной безопасности.

Целью радиационного контроля является получение информации об индивидуальных и коллективных дозах облучения персонала, пациентов и населения, а также сведения о всех регламентируемых величинах, характеризующих радиационную обстановку.

В соответствии с Основными санитарными правилами обеспечения радиационной безопасности (ОСПОРБ-99) объектами радиационного контроля являются:

Персонал групп А и Б при воздействии на них ионизирующего излучения в производственных условиях;

Пациенты при выполнении медицинских рентгенорадиологических процедур;

Население при воздействии на него природных и техногенных источников излучения;

Среда обитания человека.

Контроль за радиационной безопасностью в организации разрабатывается на стадии проектирования. В разделе «Радиационный контроль» определяются виды и объем радиометрического и дозиметрического контроля, перечень необходимых приборов, размещение стационарных приборов и точек постоянного и периодического контроля, состав необходимых помещений, а также штат службы радиационной безопасности. Контроль за радиационной безопасностью, определенной проектом, в ходе эксплуатации уточняется в зависимости от конкретной радиационной обстановки в организации и на прилегающей территории, и согласовывается с органами государственного санитарно-эпидемиологического надзора.

В организации производственный контроль за радиационной безопасностью осуществляется специальной службой или лицом, ответственным за радиационную безопасность, прошедшим специальную подготовку.

При работе с техногенными источниками излучения радиационный контроль должен осуществляться за всеми основными радиационными показателями, определяющими уровни облучения персонала и населения.

Вклад природных источников излучения в облучение персонала в производственных условиях должен контролироваться и учитываться при оценке доз в тех случаях, когда он превышает 1 мЗв в год.

Индивидуальный контроль за облучением персонала в зависимости от характера работ включает:

Радиометрический контроль за загрязненностью кожных покровов и средств индивидуальной защиты;

Контроль за характером, динамикой и уровнями поступления радиоактивных веществ в организм с использованием методов прямой и косвенной радиометрии;

Контроль с использованием индивидуальных дозиметров за дозой внешнего бета-, гамма- и рентгеновского излучений, нейтронов, а также смешанного излучения.

По результатам радиационного контроля должны быть рассчитаны значения эквивалентных и эффективных доз у персонала.

Индивидуальная доза облучения регистрируется в журнале с последующим внесением в индивидуальную карточку, а также в машинный носитель для создания банка данных в организациях. Результаты индивидуального контроля доз облучения персонала должны храниться в течение 50 лет. При проведении индивидуального контроля необходимо вести учет годовой эффективной дозы за 5 последовательных лет, а также суммарной накопленной дозы за весь период профессионального облучения.

Контроль за радиационной обстановкой в зависимости от характера проводимых работ включает:

Измерение уровней загрязнения радиоактивными веществами рабочих поверхностей, оборудования, транспортных средств, средств индивидуальной защиты, кожных покровов и одежды персонала;

Измерение мощности дозы рентгеновского и гамма-излучений, плотности потоков бета-частиц, нейтронов и других видов ионизирующего излучения на рабочих местах, в смежных помещениях, на территории организации, в санитарно-защитной зоне и зоне наблюдения;

Измерение уровней загрязнения рабочих поверхностей, оборудования, средств индивидуальной защиты, кожных покровов и одежды персонала;

Определение объемной активности газов и аэрозолей в воздухе рабочих помещений;

Измерение или оценку выбросов и сбросов радиоактивных веществ;

Контроль за уровнями загрязнения радиоактивными веществами транспортных средств;

Определение уровня загрязнения в объектах окружающей среды в контролируемых зонах.

Данные контроля за радиационной безопасностью используются для оценки радиационной обстановки, установления контрольных уровней, разработки мероприятий по снижению доз облучения и оценки их эффективности, ведения радиационно-гигиенических паспортов организаций и территорий.

При установлении администрацией учреждения контрольных уровней перечень и числовые значения их согласовываются с органом государственного санитарно-эпидемиологического надзора.

При установлении контрольных уровней следует исходить из принципа оптимизации с учетом:

Неравномерности радиационного воздействия во времени;

Целесообразности сохранения уже достигнутого уровня облучения на данном объекте ниже допустимого;

Эффективности мероприятий по улучшению радиационной обстановки.

При изменении характера работ контрольные уровни подлежат уточнению.

И в системе мероприятий по обеспечению радиационной безопасности различных групп населения также исключительно важное значение принадлежит инструментальному объективному дозиметрическому контролю. В отличие от многих других физических и химических факторов окружающей среды ионизирующая радиация субъективно не воспринимается органами чувств человека (даже при весьма высоких уровнях). Поэтому объективное суждение о наличии, характере и уровнях радиации достоверно может быть только в результате инструментально-дозиметрического исследования.

Объекты и задачи такого исследования разнообразны. Главными из них являются:

1. Определение фактической дозы внешнего ионизирующего облучения в естественных условиях, а также в различных условиях использования искусственных источников радиации или аварийных ситуациях.

2. Определение эффективности устройств и средств защиты от ионизирующего излучения.

3. Определение наличия и уровней загрязнения объектов окружающей среды радиоактивными нуклидами.

4. Определение содержания радиоактивных нуклидов в воздухе, почве, воде, пищевых продуктах.

При необходимости определения нуклидного состава дозиметрическое исследование сочетается с химическим. В настоящее время для перечисленных выше целей используются различные методы. Все они основаны на непосредственной регистрации ионизирующего излучения ли­бо вторичных эффектов, возникающих при его взаимодействии с облучаемой средой.

МЕТОДЫ КОНТРОЛЯ РАДИАЦИОННОЙ ОБСТАНОВКИ

II Дозиметри́ческий контро́ль

комплекс мероприятий, обеспечивающих систематическое измерение, регистрацию и оценку доз ионизирующих излучений, получаемых персоналом предприятий атомной промышленности, атомных электростанций и т.п., а также уровней загрязнения окружающей среды радиоактивными веществами; в условиях ядерной войны предусматривается осуществление Д. к. личного состава войск и формирований гражданской обороны, различных групп населения и окружающей среды.

Дозиметри́ческий контро́ль группово́й - Д. к. группы людей, находящихся в одинаковых условиях облучения.

Дозиметри́ческий контро́ль индивидуа́льный - Д. к., обеспечивающий измерение и оценку внешнего облучения человека, степени его внутреннего радиоактивного загрязнения, а также загрязнения его кожных покровов и одежды.


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Смотреть что такое "Дозиметрический контроль" в других словарях:

    дозиметрический контроль - дозиметрический контроль: Комплекс организационных и технических мероприятий по определению доз облучения людей, проводимых с целью количественной оценки эффекта воздействия на них ионизирующих излучений; Источник … Словарь-справочник терминов нормативно-технической документации

    Комплекс организационных и технических мероприятий по определению доз облучения людей, проводимых с целью количественной оценки эффекта воздействия на них ионизирующих излучений. EdwART. Словарь терминов МЧС, 2010 … Словарь черезвычайных ситуаций

    Дозиметрический контроль - комплекс организационных и технических мероприятий по определению доз облучения людей с целью количественной оценки эффекта воздействия на них ионизирующих излучений … Российская энциклопедия по охране труда

    дозиметрический контроль - Комплекс организационных и технических мероприятий по определению доз облучения людей с целью количественной оценки эффекта воздействия на них ионизирующих излучений. [ГОСТ Р 22.0.05 94] Тематики техногенные чрезвычайные ситуации Обобщающие… … Справочник технического переводчика

    дозиметрический контроль - dozimetrinė kontrolė statusas T sritis fizika atitikmenys: angl. health monitoring; radioactive survey vok. Kernstrahlungskontrolle, f; Strahlenschutzüberwachung, f rus. дозиметрический контроль, m; радиационный контроль, m pranc. contrôle de… … Fizikos terminų žodynas

    дозиметрический контроль - rus радиационнная дозиметрия (ж), дозиметрический контроль (м) eng radiation monitoring fra détection (f) des rayonnements deu Strahlennachweis (m), Strahlenüberwachung (f) spa control (m) de la irradiación … Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки

    дозиметрический контроль - dozimetrinė kontrolė statusas T sritis apsauga nuo naikinimo priemonių apibrėžtis Esamos jonizuojančiosios spinduliuotės aptikimas ir matavimas dozimetriniais prietaisais. Taip pat vadinama radiologine kontrole. atitikmenys: angl. radiological… …

    дозиметрический контроль - dozimetrinė kontrolė statusas T sritis apsauga nuo naikinimo priemonių apibrėžtis Veiksmai ir priemonės technikos, maisto produktų, vandens ir kt. objektų radioaktyviajam užterštumui nustatyti ir žmonių radioaktyviąjai apšvitai kontroliuoti.… … Apsaugos nuo naikinimo priemonių enciklopedinis žodynas

    Дозиметрический контроль - мероприятие по защите войск от поражения радиоактивными веществами; подразделяется на контроль радиоактивного облучения и контроль радиоактивного заражения. Контроль радиоактивного облучения состоит из измерения доз облучения, получаемых… … Краткий словарь оперативно-тактических и общевоенных терминов

    Комплекс мероприятий, обеспечивающих систематическое измерение, регистрацию и оценку доз ионизирующих излучений, получаемых персоналом предприятий атомной промышленности, атомных электростанций и т. п., а также уровней загрязнения окружающей… … Большой медицинский словарь

– это комплекс организационных и технических мероприятий по определению доз облучения людей, проводимых с целью количественной оценки эффекта воздействия на них ионизирующих излучений. Организация дозиметрического контроля предусматривает назначение допустимого времени пребывания (работы) на загрязненной радиоактивными веществами местности или работы с источниками ионизирующих излучений с учетом ранее полученных доз облучения. Результаты дозиметрического контроля используются также для принятия мер непревышения допустимых пределов индивидуальных доз облучения людей.

Воздействие ионизирующего излучения на организм человека оценивается величиной эффективной дозы (см. Доза эффективная ), используемой как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов и тканей с учетом их радиочувствительности. Единица измерения эффективной дозы - Зиверт (Зв). Допустимые пределы доз определяются в соответствии с рекомендациями норм радиационной безопасности (НРБ-99/2009). По данным дозиметрического контроля определяется режим работы формирований (групп спасателей) и необходимость направления на обследование в медицинские учреждения. Контроль облучения личного состава (персонала), находящегося на загрязненной радиоактивными веществами местности или работающими с источниками ионизирующих излучений, проводится постоянно. Дозиметрический контроль ведется групповым и индивидуальным способами. Для населения его допускается производить расчетным путем по уровням излучения и времени работы (нахождения на загрязненной территории) с учетом коэффициента ослабления.

Индивидуальный контроль проводится с целью получения данных о дозах облучения каждого человека и включает в себя определение доз внешнего облучения с использованием индивидуальных дозиметров (измерителей доз), а также контроль поступления радиоактивных веществ в организм или отдельный орган, формирующих дозы внутреннего облучения, который осуществляется в медицинских учреждениях. Групповой контроль организуется руководителем (начальником) с целью получения данных о средних дозах облучения личного состава, когда отсутствует возможность обеспечения всех работающих в условиях радиоактивного загрязнения индивидуальными дозиметрами (измерителями доз). Для этого формирования обеспечиваются индивидуальными дозиметрами (измерителями доз) из расчета 1-2 дозиметра на группу людей 12-20 человек, действующих в одинаковых условиях обстановки. Снятие показаний индивидуальных дозиметров (измерителей доз) как при групповом, так и при индивидуальном способе контроля производится руководителем (начальником) или специально назначенным лицом. Измерение показаний индивидуальных дозиметров, расчет эффективной дозы внешнего облучения личного состава, и их регистрация производится сразу после окончания работы и выхода с загрязненной территории (участка). Возможна другая периодичность измерений в зависимости от технических характеристик индивидуальных дозиметров. Эта периодичность должна быть установлена в инструкции.

По результатам измерения или расчета индивидуальных доз внешнего и внутреннего облучения производится определение индивидуальных эффективных доз облучения, и результаты заносятся в журналы регистрации доз облучения. В журналы регистрации доз облучения заносятся только дозы облучения, отличные от нулевых. Эти журналы должны храниться в подразделениях (формированиях) в течение календарного года. В январе каждого года значения эффективной дозы облучения (внешнего и внутреннего) личного состава на основании записи в журналах регистрации доз вносятся в карточки учета индивидуальных доз облучения, а также в базу данных автоматизированной системы учета индивидуальных доз (при ее наличии). Учет доз производится за последовательные 5 лет и весь период службы (работы). Карточки хранятся в течение 50 лет после прекращения военнослужащим (рабочим, служащим) работы в условиях воздействия ионизирующего излучения. В случае перевода личного состава в другие части или учреждения, где проводятся такие работы, копии карточек должны пересылаться на новое место службы (работы). Сведения о дозах облучения прикомандированных военнослужащих, рабочих и служащих, имеющих допуск к работам с источниками ионизирующих излучений, должны сообщаться по месту их постоянной службы (работы) в течение месяца после окончания командировки.

Командиры (начальники) подразделений, работающих в условиях ионизирующих излучений, должны принимать все меры к снижению доз облучения личного состава до возможно низкого уровня. Снижение доз облучения личного состава достигается:

  • использованием теневой защиты от ионизирующего излучения, стационарных и переносных экранов, снижающих уровни гамма- и нейтронного излучений, специальной одежды и обуви, а также , снижающих уровни альфа- и бета-излучений;
  • применением дистанционного управления и дистанционного инструмента, проведением организационных мероприятий, направленных на увеличение расстояния от ИИИ;
  • ограничением времени работы в условиях воздействия ионизирующего излучения.

Все случаи облучения свыше основных пределов доз, установленных НРБ-99/2009, расследуются комиссией. По материалам расследования руководителями (командирами, начальниками) принимаются решения, включающие меры по предотвращению случаев переоблучения личного состава.

БАКТЕРИОЛОГИЧЕСКОГО КОНТРОЛЯ

ОРГАНИЗАЦИЯ ДОЗИМЕТРИЧЕСКОГО, ХИМИЧЕСКОГО И

Под радиационной обстановкой понимают масштабы и степень радиоактивного заражения местности, оказывающие влияние на действия формирований, работу объектов экономики, в т.ч. – объектов здравоохранения. Цель оценки радиационной обстановки – определение возможного влияния ее на трудоспособность населения.

Оценить радиационную обстановку значить проанализировать различные действия формирований в условиях радиоактивного заражения и выбрать наиболее целесообразные варианты действий, исключающих радиоактивное поражение населения (рассчитать ожидаемые дозы облучения, продолжительность пребывания в зонах заражения, время входа формирований в зоны заражения и т.д.).

Радиационная обстановка может быть выявлена и оценена как по результатам прогнозирования последствий применения ядерного оружия, так и по данным радиационной разведки.

Оценка методом прогнозирования дает лишь ориентировочные данные, которые могут существенно отличаться от фактических, так как прогнозирование осуществляется после применения ядерного оружия, но до выпадения радиоактивных осадков. При прогнозировании можно с достаточной точностью установить направление и скорость движения радиоактивного облака, а следовательно и время начала выпадения осадков. Это позволяет заблаговременно организовать ряд мероприятий по защите населения.

При прогнозировании определяется 4 зоны возможного заражения: зона умеренного заражения (зона А, обозначаемая на карте синим цветом); зона сильного заражения (зона Б, обозначаемая зеленым цветом); зона опасного заражения (зона В, обозначаемая коричневым цветом) и зона чрезвычайно опасного заражения (зона Г, обозначаемая черным цветом).

При оценке радиационной обстановки методом прогнозирования не определяется точное положение радиоактивного следа на местности, а только предсказывается район, в пределах которого возможно его образование; при этом площадь заражения составляет примерно 1/3 площади указанного следа.

Фактическая радиационная обстановка складывается на территории конкретного района, населенного пункта или объекта экономики и требует принятия мер защиты населения и объектов экономики.

Выявление фактической радиационной обстановки осуществляется по данным радиационной разведки. Радиационная разведка производится в целях своевременного обеспечения начальника гражданской обороны информацией о радиоактивном заражении. Измерение мощности дозы на местности являются исходными данными для оценки радиационной обстановки. Разведка ведется непрерывно постами радиационного и химического наблюдения и специально подготовленными группами (звеньями) радиационной и химической разведки. Главной их задачей является своевременное обнаружение радиоактивного или химического заражения и оповещения об опасности населения и личного состава нештатных аварийно-спасательных формирований гражданской обороны.



Основными приборами для обнаружения ионизирующего излучения являются измерители мощности дозы (ретнгенометры-радиометры), а дозиметрического контроля – дозиметры: ДП-5, ДП-22В, ДП-24, ИД-1, ИД-11, ДП-70, ДП-3Б.

Для оперативного принятия решений об объеме мероприятий по противорадиационной защите населения и личного состава нештатных аварийно-спасательных формирований гражданской обороны достаточно получить данные об уровне гамма-излучения (именно оно дает максимальный уровень радиации в период выпадения радиоактивных осадков, или же в любые другие определенные моменты времени после ядерного взрыва) на зараженной местности спустя определенное время после ядерного взрыва или аварии на радиационно опасном объекте.

Обнаружить местное выпадение радиоактивных осадков можно с помощью приборов для радиационной разведки (рентгенометр-радиометр ДП-5А, Б или В). Радиационная разведка проводится методом поста или методом дозора формированиями медицинской службы ГО с целями своевременно установить факт радиационного загрязнения местности и определить уровень радиации, доложить о фактах радиационного загрязнения и подать сигнал оповещения, оградить радиационно загрязненную территорию, установить безопасные маршруты передвижения и пути объезда, а также для осуществления контроля за изменением уровня радиации на местности.

При разведке методом поста радиационное наблюдение производят путем периодического (через 20-30 мин.) включения рентгенометра-радиометра ДП-5А (Б,В).

Дозиметрический контроль организуется с целью предотвращения облучения населения в поражающих дозах, оценки трудоспособности населения, подвергшегося радиационному облучению, определения дозы облучения пораженных для установления степени тяжести лучевой болезни, определение степени загрязнения радиоактивными веществами продуктов и воды.

Организация контроля заключается в следующем:

– обеспечение личного состава нештатных аварийно-спасательных формирований гражданской обороны и населения дозиметрами (ИД-1, ИД-11 и т.д.);

– снятие показаний в лечебных учреждениях осуществляется фельдшером (медсестрой) при проведении медицинской сортировки до осмотра врачом;

– дозы облучения фиксируются в историях болезни и заверяются подписью врача;

– регистрация доз облучения производится при выписке из лечебного учреждения в «карточках доз облучения»;

– предоставление сведений о дозах облучения личного состава нештатных аварийно-спасательных формирований гражданской обороны и населения в вышестоящий штаб ГО.

Средние значения коэффициентов ослабления мощности дозы ионизирующего излучения укрытиями и транспортными средствами

Значение приведенного коэффициента ослабления гамма-излучения жилыми домами приведены для сельской местности. В городах этот показатель выше на 20-40%.

Принцип защиты от внутреннего ионизирующего облучения

Источники ионизирующих излучений в закрытом виде – это источники излучения, устройство которых исключает поступление содержащихся в нем радионуклидов в окружающую среду в условиях применения и сроков износа, на которые они рассчитаны. Примерами закрытых источников могут служить: радиоактивные бусы для внутриполостной радиотерапии, иглы из кобальта-60 для внутренней радиотерапии, аппараты для теле-γ-терапии, рентгенотерапии и рентгенодиагностики.

К факторам защиты при работе с радиоактивными источниками в закрытом виде относятся:

1) “Защита количеством” – снижение до минимально допустимой активности источника облучения, при которой из-за увеличения времени облучения начинает возрастать доза на здоровые ткани (например, в “Рокусе” или “Луче”);

2) “Защита временем” – доведение манипуляций с радиоактивными источниками до автоматизма, в результате чего заметно уменьшается время облучения и, соответственно, доза на работающего;

3) “Защита расстоянием” – самый эффективный принцип защиты, так как между дозой и расстоянием существует обратно квадратичная зависимость. При увеличении расстояния в 2 раза доза уменьшается в 4 раза, а при увеличении расстояния в 3 раза – в 9 раз. Для увеличения расстояния используют дистанционный инструментарий, различные манипуляторы, захваты, щипцы и др.;

4) “Защита экранами” – изменяя плотность среды, можно значительно снизить дозу облучения. Для защиты от квантовых видов излучений (γ- и рентгеновское), которые рассеиваются экранами, применяются, как правило, материалы, имеющие большую атомную массу (свинец, уран). Для защиты от корпускулярных (α- и β-частиц) видов излучения такие экраны использовать нельзя, так как они, поглощаясь в материалах экрана, выделяют тормозное квантовое излучение, жесткость которого тем выше, чем больше атомная масса экрана. Поэтому в данном случае используются экраны из материалов, имеющих малую атомную массу (органическое стекло, алюминий и др.). При этом для защиты от β-частиц целесообразно использовать двойной экран – органическое стекло со стороны излучателя (поглощение) и алюминий со стороны объекта защиты (рассеивание тормозного излучения).

При работе с нейтронными источниками используются многослойные экраны. Первым слоем на пути нейтронов должен быть замедлитель, т.е. водородсодержащий материал (вода, парафин, органическое стекло, воск и др.), вторым слоем должен быть поглотитель медленных нейтронов (гадолиний, кадмий, бор). Третьим слоем на пути уже не нейтронов, а возникшего γ-излучения должен быть слой из свинца.

Дозиметрический и радиометрический контроль. Методы применения.

Основным способом проверки достаточности мер радиационной защиты персонала является дозиметрический контроль. Используются следующие принципы измерения радиоактивности и доз излучения:

1. ионизационный – основан на ионизации воздуха или другого газа между электродами, имеющими разные потенциалы, между которыми под влиянием излучения возникает электрический ток. Этот принцип используется в ионизационных камерах Гейгера – Мюллера и дозиметрах конденсаторного типа;

2. сцинтилляционный – основан на возбуждении и ионизации атомов и молекул вещества при прохождении через него заряженных частиц, с последующим испусканием светового излучения, которое усиливают с помощью фотоэлектронного умножителя и регистрируют счетным устройством;

3. люминесцентный – радиофотолюминесцентный и радиотермолюминесцентный – основаны на накоплении поглощенной в люминофорах энергии, которая освобождается под воздействием ультрафиолетового излучения определенной длины волны или нагревом, в результате чего наблюдается оптический эффект, адекватный поглощенной энергии;

4. фотохимический – основан на воздействии ионизирующих излучений на фотоэмульсию фотографической пленки, измеряемому по оптической плотности почернения проявленной и фиксированной пленки.

Дозиметрический контроль включает: определение индивидуальных доз облучения, получаемых каждым работающим; систематический контроль за мощностью дозы облучения непосредственно на рабочих местах и в смежных помещениях; применение приборов, сигнализирующих о превышении допустимой дозы облучения.

В соответствии с этим приборы, используемые для дозиметрического контроля, делятся на три группы: дозиметры индивидуального контроля, стационарные или переносные приборы измерения мощности доз излучения на рабочем месте и стационарные установки для регистрации мощности излучения в определенных помещениях.

Последние, как правило, оснащены сигнальным устройством превышения мощности излучения.

Наибольшее значение имеет определение дозы за счет рентгеновского и γ-излучения, потоков нейтронов и β-частиц.

Эффективность регистрации различных видов излучений зависит от детектора прибора. Приборы, основанные на принципе ионизационной камеры, наиболее пригодны для измерения квантового излучения. Для измерения β-потоков применяют приборы с датчиками в виде газоразрядных или сцинтилляционных счетчиков. Для регистрации нейтронов используют сцинтилляционные детекторы, помещенные в фильтры из бора или кадмия.

При проведении группового радиационного контроля необходимо учитывать следующие основные положения:

· используемая для целей группового контроля аппаратура должна строго соответствовать задачам и конкретным условиям того или иного радиационно-технологического процесса;

· режимы эксплуатации радиационной техники при проверке эффективности защиты рабочих мест и смежных помещений должны соответствовать реальным условиям их использования;

· необходимо проводить столько исследований, чтобы можно было получить достоверную информацию о радиационной обстановке на объекте.

Большинство выпускаемых в настоящее время дозиметрических и радиометрических приборов не являются универсальными и могут использоваться в сравнительно небольшом диапазоне энергии, поэтому при выборе аппаратуры для проведения санитарно-дозиметрического контроля необходимо учитывать:

· вид и энергию излучения,

· диапазон чувствительности прибора,

· погрешность измерений и другие параметры приборов в полном соответствии с их паспортными данными.

Важное значение при выборе аппаратуры придается зависимости показания приборов от энергии измеряемого излучения (т.е. «ходу с жесткостью» – диапазону энергии излучения, измеряемого данным прибором).

В некоторых случаях ошибка измерений, обусловленная «ходом с жесткостью», может достигать 400%. Наименьший «ход с жесткостью» имеют приборы, датчики которых изготовлены из воздухоэквивалентных материалов.

По своему назначению все приборы могут быть условно разделены на следующие группы:

1. Рентгенометры – приборы, измеряющие мощность экспозиционной дозы ионизирующего излучения.

2. Радиометры – приборы, измеряющие плотность потоков ионизирующих излучений (интенсивность внешних потоков β-частиц, нейтронов и др.).

3. Индивидуальные дозиметры – приборы, измеряющие экспозиционную или поглощенную дозу ионизирующих излучений.

Кроме того, вся аппаратура радиационного контроля подразделяется на приборы стационарного назначения и переносные приборы.

Стационарные радиометры позволяют осуществлять непрерывный контроль за мощностью экспозиционных доз, концентрациями радиоактивных веществ в воздухе, сточных водах. Эта группа аппаратуры чаще всего используется как составной элемент технологического процесса, способствующий повышению степени надежности системы радиационной безопасности. Как правило, эти приборы имеют широкий диапазон измерений. Переносные приборы применяются для контроля и оценки эффективности защитных устройств и условий радиационной безопасности на рабочих местах, в жилых помещениях и на местности.

В современных условиях широкое применение имеет спектрометрический комплекс «ПРОГРЕСС», который предназначен для измерения активности альфа-, бета- и гамма-излучающих нуклидов в счетных образцах спектрометрическим методом. Комплекс используется в лабораторных условиях как установка специального назначения и является средством для измерения активности радионуклидов в различных объектах окружающей среды.

Принцип действия данного комплекса заключается в получении аппаратурного спектра импульсов от детектора, регистрирующего излучение счетного образца, экспонируемого в фиксированных условиях измерения. Активность радионуклида в исследуемой пробе определяется путем обработки полученной спектрограммы на компьютере с помощью специального пакета программ «ПРОГРЕСС-3.0», позволяющего управлять работой каждого самостоятельного спектрометрического тракта, анализировать спектрограмму и идентифицировать радионуклиды, определять активность соответствующих нуклидов в пробе, рассчитать погрешность измерения активности и протоколировать результаты измерений.

В зависимости от вида и энергии излучения можно сделать правильный выбор радиометрической и дозиметрической аппаратуры. Если выбор аппаратуры для регистрации γ-излучения с энергией от 100 кэВ до 3 МэВ не вызывает особых трудностей, то при энергии излучения менее 100 кэВ можно ожидать большие погрешности измерений.

Следует отметить, что правильность показаний радиометрической и дозиметрической аппаратуры определяется многими факторами: интенсивностью излучения, угловой зависимостью, правильностью градуировки и условиями окружающей среды (температура воздуха, относительная влажность).

Индивидуальный дозиметрический контроль. Данные дозиметрического контроля внешних полей ионизирующих излучений, полученные путем измерения мощностей доз, потоков нейтронов или заряженных частиц стационарными или переносными приборами, как правило, оказываются недостаточными для характеристики доз облучения, полученных персоналом, так как поля ионизирующих излучений изменяются во времени и пространстве. Вот почему для оценки индивидуальных доз облучения персонала применяются индивидуальные дозиметры.

В настоящее время известны индивидуальные дозиметры, основанные на применении малых ионизационных камер или конденсаторных камер (метод ИДК), специальных сортов фотопленки (ИФК) и термолюминесцентных детекторов (ТЛД) и др.

Все эти дозиметры применяются преимущественно для регистрации рентгеновского и γ-излучений.

Некоторые (ИФК, ТЛД) используются и для дозиметрии других видов излучений (нейтронных и β-потоков, тяжелых заряженных частиц и др.)

Индивидуальный контроль с помощью конденсаторных камер (ИДК).Принцип действия конденсаторных камер основан на пропорциональном изменении потенциала под действием рентгеновского или γ-излучений.

Методика индивидуального фотоконтроля основана на сравнении оптической плотности почернения экспонированных (рабочих) пленок с контрольными, которые были облучены известной дозой. До недавнего времени использовались методы ИФК-2,3, ИФК-2,3М, ИФКУ.

Термолюминесцентные дозиметры. В настоящее время наибольшее распространение, в том числе и в Казахстане, получили методы термолюминесцентной дозиметрии на основе детекторов из фтористого лития, фтористого кальция и алюмофосфатных стекол. При проведении индивидуального контроля используются термолюминесцентные дозиметры типа ТЛД. При размещении этих дозиметров на поверхности тела работающего необходимо учитывать характер работ, возможность тотального или локального облучения. При тотальном облучении ТЛД должны располагаться на уровне груди и области таза. При локальных – грудь-голова, грудь-таз, грудь-нижние конечности и др.

Также в санитарной практике при оценке индивидуальных доз облучения персонала рентгенкабинета и пациента нашел в настоящее время применение метод измерения произведения поглощенной дозы на площадь рентгеновского излучения на выходе рентгеновского аппарата и метод определения расчетным путем эффективной дозы, полученной пациентом при рентгеновской диагностике и рентгенотерапии, с использованием соответствующих методик расчета, согласно (МУК № 5.05.011.03; № 5.05.012.03), утвержденных МЗ РК. Для проведения этого исследования измерение поглощенной дозы рентгеновского излучения проводится с помощью дозиметра рентгеновского излучения-клинического (ДРК-1)

Для получения достоверных результатов измерения внешнего облучения необходимо соблюдать следующие основные правила:

· выбор мест для отдельных замеров намечается на основании предварительного санитарного описания условий труда, в котором указывается характер работы, режим работ с ионизирующим излучением и др.

· для измерений следует использовать только стандартные приборы, отградуированные официальными учреждениями.

· для большей надежности измерения проводятся в каждой точке не менее 2 – 3 раз.

· в тех случаях, когда облучение персонала в период работы неравномерно, оценка полученных доз может быть проведена только на основании данных индивидуальной дозиметрии.

· необходимо учитывать суммарное облучение за счет всех видов облучения, воздействующих на работающих в обследуемом производстве.

· данные индивидуальной дозиметрии, полученные дозиметрической службой объекта, могут быть использованы только после проверки показаний индивидуальных дозиметров.

Оценка доз внутреннего облучения. При определении степени радиационной опасности наряду с данными, характеризующими уровни внешнего облучения, важна оценка доз внутреннего облучения, которая в отдельных случаях (при работе с радиоактивными веществами в открытом виде) может играть решающую роль в характере радиационного воздействия.

Для условий профессиональной деятельности на первом месте стоит ингаляционный путь поступления радионуклидов, а затем контактный. При оценке доз внутреннего облучения для отдельных лиц из населения ведущий пероральный и затем ингаляционный пути поступления.

Следует иметь в виду, что до настоящего времени не существует методов прямой дозиметрии, позволяющей сразу оценить уровни внутреннего облучения. В связи с этим определение доз внутреннего облучения производят на основе сведений по содержанию радиоактивных веществ в теле человека или по поступлению их в организм, применяя следующие методы:

· прямой – определение радиоактивных веществ во всем теле или отдельных критических органах путем измерения интенсивности излучения тела человека. Используется, например, при определении мощности дозы гамма-излучения от пациента при выходе его из радиологического отделения, где с терапевтической целью были введены радиофармацевтические препараты. Она не должна превышать 3 мкЗв/ч на расстоянии от него 1 метр. Для этой цели могут использовать сцинтилляционные спектрометры (с кристаллическими Nal (T1) или жидкостными детекторами).

· косвенный, основанный на определении содержания радиоактивных веществ во всем теле или в отдельном органе по данным радиометрии биосубстратов человека (слюна, пот, выдыхаемый воздух, кровь, фекалии, моча) или по результатам радиометрических исследований воздуха, пищевых, продуктов, воды и уровней загрязнения поверхностей.

Из всех видов выделений наиболее часто для радиометрических исследований берут мочу.

Радиометрия слюны и пота мало пригодна для подобных исследований, так как сведений о соотношении между активностью этих биосубстратов и содержанием радиоактивных веществ в организме пока недостаточно. Радиометрия выдыхаемого воздуха применяется только для оценки содержания в организме радия и тория (по выдыхаемому радону и торону).

Интерпретация результатов радиометрии по активности фекалий также является сложной, ибо радиоактивные вещества попадают в них несколькими путями: через рот, с пищеварительными соками и желчью. Некоторая часть радиоактивных изотопов поступает в желудочно-кишечный тракт при заглатывании мокроты, поступающей из легких. Связь между результатами активности фекалий и содержанием радиоактивных веществ в теле надежно устанавливается, если имеется только один путь поступления (пероральный или ингаляционный), а всасыванием радиоактивных изотопов из желудочно-кишечного тракта в этом случае пренебрегают.

При интерпретации результатов необходимо располагать информацией о функции удержания радиоактивных веществ во всем теле и критическом органе, о функции выделения, а также о той доле изотопа, которая перейдет из крови в критический орган.

Вся работа при проведении исследований с помощью косвенных методов радиометрии делится на три этапа:

· организационный;

· радиометрический или радиохимический анализ;

· интерпретация результатов исследования.

На первом этапе (организационный) основное внимание обращается на правильный выбор группы лиц, у которых возможно поступление радиоактивных веществ во время работы или аварийной ситуации, сбор суточного выделения биоматериала, подготовка проб к анализу.

На втором этапе готовят собранный биоматериал для радиохимического анализа, который проводится с целью определения радиоизотопного состава анализируемой пробы. Для этого осуществляют ее минерализацию путем озоления. При этом вначале производят выпаривание биоматериала, а затем в муфельной печи в фарфоровых тиглях его озоляют при температуре 400° - 450°С. Далее осуществляют проведение радиохимического исследования путем использования стандартных методик по определению 90Sr или 137Cs.

Если известен изотопный состав воздуха, пищевых продуктов или воды, поступивших в организм, то радиохимический анализ не проводится, а осуществляется обычное радиометрическое исследование суточных выделений. Т.е. проводят определение активности препаратов, предварительно сконцентрированных из анализируемой пробы, в виде сухого остатка, золы. Для оценки результатов радиометрии необходимо осуществить сбор выделений у контрольной группы лиц (не имеющих, например, контакт работы с радиоактивными веществами). По разности полученных результатов между обследуемой и контрольной группой судят об активности выделений (мочи).

Интерпретация данных радиохимического или радиометрического анализа зависит от путей и продолжительности поступления радионуклидов, распределения их в организме (равномерное, остеотропное, щитовидная железа и др.), от времени пребывания радиоизотопа в организме (период полураспада и биологический период выведения).

Работа с радиоактивными веществами в открытом виде (порошками, растворами) может привести к загрязнению ими рук и одежды работающих, приборов и лабораторного оборудования, рабочих поверхностей, пола и стен помещений, а также воздуха. С этих объектов радиоактивные вещества могут попадать внутрь организма, вследствие чего работающий персонал может подвергаться как внешнему, так и внутреннему облучению.

Для решения вопросов защиты лиц, имеющих дело с радионуклидами, производится определение уровней загрязненности поверхностей. Найденные величины сравнивают с допустимыми уровнями.

При установлении этих предельно допустимых уровней были приняты следующие положения.

· суммарная поглощенная доза, полученная организмом за счет внешнего и внутреннего облучения, не должна превышать установленной предельно допустимой дозы облучения.

· при попадании в организм α-активные вещества представляют большую опасность, чем β-активные вещества.

· предельно допустимые уровни загрязненности для рук и других частей тела должны быть меньше, чем для других поверхностей, так как вероятность попадания радиоактивных веществ внутрь организма в этом случае большая, чем в других случаях.

Определение уровней загрязненности радиоактивными веществами различных поверхностей может быть осуществлено с помощью радиометрических приборов стационарного и переносного типа, а также с помощью метода мазков. Сущность данного метода заключается в снятии радиоактивных веществ с загрязненной поверхности каким-либо материалом (марля, ватные тампоны и др.) с последующим определением уровня радиоактивности этого материала. Мазки можно брать сухими или влажными материалами. Смачивание водой или кислотой материала, которым берут мазок, повышает чувствительность метода, однако несколько затрудняет выполнение последующих операций. Во многих случаях, особенно когда имеется загрязнение гладких поверхностей (сталь, плитки и др.), а уровни загрязнения значительны, вполне приемлем сухой метод.

Эффективность снятия мазков зависит от ряда причин (характер поверхности, вид мазка, качество снятия и др.), методика снятия мазка слабо поддается стандартизации и поэтому метод не является высокоточным. Вместе с тем он очень прост в исполнении, может быть использован даже при отсутствии под рукой нужных приспособлений и дает необходимые сведения об уровне и характере загрязнения поверхностей.

В случае загрязнения радиоактивными веществами помещений или их отдельных участков (полов, стен) немедленно приступают к дезактивации. Если загрязнение вызвано сухим веществом, то последнее собирают слегка увлажненной тряпкой. Большое количество пролитых радиоактивных жидкостей засыпают опилками. После того как основное количество радиоактивного вещества будет удалено, остатки загрязнения устраняют обработкой поверхности специальными моющими средствами. Дезактивацию загрязненных поверхностей производят при помощи мягких щеток или тампонов, смоченных моющими средствами или смыванием.

При дезактивации поверхностей, представленных пористыми или легко смачиваемыми материалами (керамические плитки, цемент), не следует оставлять моющий раствор на обрабатываемой поверхности на длительное время во избежание впитывания материалом радиоактивного вещества вместе с моющими растворами. Если загрязненная поверхность представляет собой сплошное покрытие без швов и стыков (пластикат, линолеум и др.), то обработку можно проводить обильным смачиванием (поливанием, пульверизацией).

Обрабатываемую поверхность после дезактивации специальными моющими средствами обильно промывают водой и протирают сухой чистой тряпкой, после чего контролируется чистота поверхности соответствующим радиометрическим прибором. Использованные щетки, тампоны собирают в пластикатовые мешки или в другие емкости и удаляют как радиоактивные отходы. В качестве моющих средств для дезактивации помещений могут применяться различные составы. Средства индивидуальной защиты при их загрязнении радиоактивными веществами дезактивируют в специально оборудованных прачечных. При очистке кожных покровов от радиоактивных загрязнений следует помнить, что чем раньше к ней приступят, тем она будет эффективнее, так как длительная задержка радиоактивных загрязнений на коже приводит к их большей фиксации. В большинстве случаев для обработки рук достаточно хорошо отмыть их теплой водой с применением мыла и щетки. При высоких уровнях загрязнения, когда мыло не дает должного эффекта, применяют различные специальные составы, в частности адсорбенты, комплексообразователи и растворители. Однако различные физико-химические свойства многочисленных радиоактивных элементов не дают возможности рекомендовать универсальные средства. Поэтому специальные составы имеют весьма ограниченное применение. Так, при загрязнении рук радиоактивными торием и фосфором рекомендуют применять мыло с добавкой трилона Б, моющего порошка «Новость»; для очистки от загрязнения радием – каолиновое мыло и т. д.