Как писать функциональные требования. Документы, модели, создаваемые на стадиях по

В литературе приводится довольно большое число классификаций требований. Требования называются функциональными и нефункциональными, пользовательскими и системными, C – требованиями и D – требованиями, требованиями к интерфейсу, к окружению и т.д. При разработке требований важно понимать разницу между требованиями, описывающими функциональность, и требованиями, определяющими дополнительные свойства системы. Кроме этого нужно учитывать уровень требований .

Все требования разбиваются на три уровня:

    Бизнес-требования. Бизнес-требования определяются целями и политикой организации их высказывают те, кто финансирует проект.

    Требования пользователей. Определяют цели и задачи, которые позволит решить система, или что пользователи смогут делать с помощью системы. Пользовательские требования должны соответствовать бизнес-требованиям в противном случае их не следует включать в проект.

    Системные требования . Определяют функциональность и характеристики системы, которую должны построить разработчики, для того чтобы пользователи смогли выполнить свои задачи (в рамках бизнес-требований).

Полезность такого представления требований в том, что оно показывает с чего (и с кого!) нужно начинать выявление требований, кто и какого уровня может принимать решения.

Каждая система требований (бизнес-требования, требования пользователей и системные требования.) включает в себя функциональные и нефункциональные требования.

      1. Функциональные требования

Функциональные требования определяют функции, которые выполняет система, и зависят от потребностей пользователей и типа решаемой задачи. Функциональные пользовательские требования описывают функции в обобщенном виде. Выполняя детализацию этих требований, разработчики формируют более подробное и точное описание сервисов системы – функциональные системные требования .

Особое внимание при документировании требований нужно уделить их точному описанию. Неточности в описании будут интерпретироваться пользователями и разработчиками по-разному. Такое положение приведет к разработке новых требований или изменению существующих требований, а, значит, к внесению изменений в систему и ее удорожанию.

Спецификация требований , содержащая пользовательские и системные требования должна быть комплексной и непротиворечивой. В ней должны быть определены все функции системы, и не должно быть несовместимых и взаимоисключающих определений функций.

      1. Нефункциональные требования

Нефункциональные требования определяют характеристики и ограничения системы и не связаны непосредственно с функциональными требованиями. Нефункциональные требования можно разделить на нефункциональные требования к продукту , нефункциональные требования к процессу и внешние нефункциональные требования .

        1. Нефункциональные требования к продукту

Нефункциональные требования к продукту определяют его эксплуатационные качества, т.е. определяют, то насколько хорошо будет работать система. Часто такие характеристики называются атрибутами или факторами качества программ . Основная сложность заключается в том, что атрибуты качества трудно определить (выявить), их невозможно измерить, и они сильно влияют на реализацию системы.

Существует большое число атрибутов качества. Например, стандарт ISO 9126 предлагает оценивать программную продукцию по шести характеристикам качества , рекомендуя использовать 21 показатель (подхарактеристику ) качества . Этот же стандарт советует учитывать, что представления о качестве для разных групп заинтересованных лиц отличаются, приводя в качестве примера представления о качестве пользователей, разработчиков и руководителей проекта.

Приведем некоторые атрибуты качества, важные для пользователей.

Производительность

Требования к производительности определяют насколько быстро и качественно система должна выполнять определенные функции. Они определяют время отклика, пропускную способность и т.д. Жесткие требования к производительности существенно влияют на выбор аппаратных средств, технологию разработки и принимаемые инженерные решения при реализации.

Надежность и доступность

Надежность это вероятность работы системы без сбоев в течение определенного времени. Для измерения надежности может быть использовано среднее время работы системы до сбоя.

Под доступностью понимается время доступности , т.е. время, в течение которого система доступна для использования и полностью работоспособна. Это время определяется средним временем до сбоя и зависит от времени планового технического обслуживания.

Безопасность

Удобство и простота обслуживания

Этот атрибут связан с большим числом факторов, определяющих, по словам пользователей, дружелюбие системы к пользователю. Другими словами система должна использоваться эффективно и необременительно. Достаточно подробно эти характеристики, определяющие практичность системы рассмотрены в .

Для разработчиков и специалистов по обслуживанию от системы требуются другие характеристики. Приведем некоторые из таких атрибутов качества.

Легкость сопровождения и эксплуатации

Этот атрибут определяет насколько просто и удобно модифицировать продукт и исправлять найденные в нем ошибки. Он важен для продуктов, которые подвергаются частым изменениям.

Мобильность

Этот атрибут определяет усилия, необходимые для перенесения продукта из одной операционной среды в другую. Важно на этапе разработке требований точно определить те среды и, возможно, части системы, которые должны быть перемещаемыми.

Повторное использование

Затраты на разработку повторно используемых компонент сравнительно велики, но эффект их использования в дальнейшем может компенсировать эти затраты. Для минимизации затрат в требованиях необходимо перечислить элементы проекта, которые должны быть спроектированы так, чтобы упростить их повторное использование.

Тестируемость

Этот атрибут показывает легкость, с которой компоненты проекта и комплексный продукт могут быть проверены на наличие ошибок.

Значительной популярностью при разработке автоматизированных систем в настоящее время в России пользуется универсальный язык моделирования (Unified Modeling Language - UML). Несмотря на безусловные плюсы, использование UML сопряжено с рядом трудностей методического характера, на которые мы хотели бы обратить внимание читателя. Прежде всего, в UML вводится собственный понятийный аппарат, в рамках которого традиционные термины и понятия, связанные с созданием автоматизированных систем и используемые в течение десятилетий, заменяются на термины и понятия, не нашедшие пока в полной мере отражения в международных и отечественных стандартах в области информационных технологий.

Особенно это касается базового элемента языка UML "Use Case", который трактуется отечественными переводчиками как "вариант использования", "прецедент". При этом контекст, в котором переводится термин, не учитывается. Несмотря на то, что понятие активно используется уже довольно давно - путаницы возникает все больше и больше. Так, участники некоторых Интернет- форумов дошли до того, что сравнивают "Use Case" с техническим заданием. По мнению авторов, все это обусловлено стандартным описанием UML, не связанным с процессом разработки автоматизированных систем (АС), а также упущенной возможностью при переводе оригинала такое сопоставление произвести. К тому же существующие современные методики создания программных систем от ведущих мировых производителей, основанных на использовании UML и других нотациях, к сожалению, большинству отечественных разработчиков в оригинале просто не доступны.

Как печальный итог, использование терминов и понятий UML, по существу представляющих собой ошибки отечественных переводчиков, в недостаточной мере знакомых с процессами создания АС, привели к тому, что в различных средствах информации появились статьи, книги, модели и прочие источники, имеющие откровенные ошибки в трактовке процессов, моделей, документов, связанных с созданием АС. Особенно это явно проявилось при описании предметной области и определения требований к АС.

В данной статье представлен способ описания функциональных требований к АС и ее функций с использованием стандартов в области информационных технологий, современных методологий создания АС, и диаграмм "Use Case Diagram" и "Actvity Diagram" универсального языка моделирования UML 2.0. Авторы рассчитывают, что использование "Use Case" в контексте определения требований в соответствии со стандартами создания АС приобретет большую ясность.

Итак, рассмотрим процесс определения требований согласно действующим отечественным стандартам.

При использовании стандартов создания АС в соответствии с на стадии "Техническое задание" в документе техническое задание (ТЗ) фиксируются функциональные и нефункциональные требования к АС. АС разрабатывается на стадии "Эскизное проектирование" и "Техническое проектирование", описание автоматизируемых функций АС производится на стадии "Техническое проектирование".

При разработке АС в соответствии с должны быть отслежены связи между функциональными требованиями к системе и функциями системы, их реализующими. Функции системы в свою очередь должны быть детально описаны.

В табл. 1. представлены стадии работ по созданию АС и документы, формируемыми на стадиях, связанных с описанием требований и функций .

Как видно из табл. 1, создание АС на стадиях 3-5, подразумевает подготовку:

    технического задания;

    предварительной схемы функциональной структуры системы (эскизное проектирование);

    окончательной схемы функциональной структуры (техническое проектирование);

    описания автоматизируемых функций системы.

Таблица 1. Стадии создания АС и документы, связанные с требованиями к АС и функциями, их реализующими

№ стадии по ГОСТ 34.601-90

Наименование
стадии по ГОСТ 34.601-90

Документы, модели, создаваемые на стадиях по

ГОСТ 34.602-89,
ГОСТ 34.201-89

ГОСТ, в котором описан документ

Техническое задание

Техническое задание (ТЗ)

Эскизное
проектирование

Схема функциональной структуры

РД 50-34.698-90 п. 2.3.

Техническое
проектирование

Схема функциональной структуры

Описание автоматизируемых
функций

РД 50-34.698-90 п. 2.5

В соответствии с ТЗ на АС есть документ, оформленный в установленном порядке и определяющий цели создания АС, требования к АС и основные исходные данные, необходимые для ее разработки, а также план-график создания АС.

В ТЗ определяются:

    требования к системе в целом;

    требования к функциям (задачам), выполняемым системой;

    требования к видам обеспечения.

Функциональные требования к системе определяют, действия системы, которые она должна выполнять. Функциональные требования реализуются через функции системы . Под функцией АС подразумевается совокупность действий АС, направленная на достижение определенной цели или аспект определенного поведения системы , а под задачей - функция или часть функции АС, представляющая собой формализованную совокупность автоматических действий, выполнение которых приводит к результату заданного вида .

Не функциональные требования есть ограничения, накладываемые на работу системы, и стандарты, которым должна соответствовать система .

В схеме функциональной структуры отображаются элементы функциональной структуры АС (подсистемы АС), автоматизированные функции и (или) задачи (комплексы задач), совокупности действий (операций), выполняемых при реализации автоматизированных функций только техническими средствами (автоматически) или только человеком.

В описании автоматизируемых функций приводят:

    перечень подсистем АС с указанием функций и (или) задач, реализуемых в каждой подсистеме;

    описание процесса выполнения функций;

    необходимые пояснения к разделению автоматизированных функций на действия (операции), выполняемые техническими средствами и человеком.

Теперь рассмотрим определение требований с использованием понятия "Use Case". Как уже говорилось ранее, в стандарте UML отсутствует привязка к стадиям создания АС, однако, производители CASE - средств для работы с UML и методологий использования UML, как правило, предлагают схожие подходы к работе с требованиями.

Рассмотрим, например, подход компании Sparx System, являющейся производителем инструментария Еnterprise Architect, поддерживающим создание моделей предметной области и АС с использованием UML 2.0. Ими предложен шаблон модели требований, представленный на рис. 1. На рис. 2 представлен пример модели требования с использованием шаблона.

Как видно из шаблона модели требований и его примера для моделирования требований предлагается использовать элемент UML "Requirement". Для моделирования функций системы предлагается использовать элемент "Use Case". При этом элемент "Use Case" в описании UML, представленном в инструменте Еenterprise Architect, трактуется следующим образом: "Use Case elements are used to build Use Case models . These describe the functionality of the system to be built. Use Case Model describes a system"s functionality in terms of Use Cases".

Другими словами, элемент "Use Case" используется для построения модели "Use case Model". Модель "Use case Model" используется для описания функциональности системы.

Под функциональностью системы в соответствии с понимается совокупность свойств программного средства, определяемая наличием и конкретными особенностями набора функций, способных удовлетворять заданные или подразумеваемые потребности.

В спецификациях OMG UML (UML Superstructure Specification, v2.0, p. 17) элемент "Use Case" определяется как: "The specification of a sequence of actions, including variants, that a system (or other entity) can perform, interacting with actors of the system".

Другими словами, элемент "Use Case" определяет последовательность действий системы, которые она может выполнять, включая ее взаимодействие с пользователем системы.

Рис. 1. Способ моделирования требований к системе

Рис. 2. Пример реализации требования

В дополнении к сказанному выше, хотелось представить определение модели "Use Case Model" из популярного в нашей стране и за рубежом процесса разработки систем Rational Unified Process компании IBM: "The use-case model is a model of the system"s intended functions and its environment …" (рис. 3).

Рис. 3. Определение модели "Use Case Model"

Модель "Use case Model" есть модель предполагаемых функций системы и ее окружения, и служит контрактом между клиентами и разработчиками. Модель используется как существенные входные данные в деятельности по анализу, проектированию и тестированию.

В табл. 2 представлено сравнение определений схемы функциональной структуры в соответствии с ГОСТ и модели "Use Case Model", функции системы и элемента "Use Case" в соответствии с описанием UML 2.0.

Таблица 2. Сравнение определений моделей и их элементов

Определение схемы функциональной структуры

Определение модели "UseCaseModel"

В схеме функциональной структуры отображаются элементы функциональной структуры АС (подсистемы АС), автоматизированные функции и (или) задачи (комплексы задач), совокупности действий (операций), выполняемых при реализации автоматизированных функций только техническими средствами (автоматически) или только человеком

Если требуется в разделе указывается время выполнения функции. Время формирования отчета не должно превышать 5 сек.

Если требуется в разделе указывается требования к надежности выполнения функции.

Если требуется, в разделе указывается требования к характеристики необходимой точности выполнения функции.

Если требуется, в разделе указывается требования к достоверности результатов выполнения функции.

Связи с другими функциональными требованиями

Если требуется, в разделе указываются связи между требованиями.

Данный шаблон рекомендуется использовать при создании документа "Описание автоматизируемых функций" и схемы функциональной структуры. Использование шаблона существенно облегчит понимание требований системы и их реализации, как со стороны заказчика, так и со стороны разработчика, что позволит в свою очередь уменьшить количество ошибок, связанных с неправильно определенными требованиями.

В заключении нам хотелось бы отметить, что перед применением UML для описания предметной области и систем необходимо изучить методики бизнес моделирования и разработки систем, которые предполагается использовать, и лишь затем перейти к созданию соглашений по моделированию с использованием UML. На наш взгляд, это конструктивный путь позволяющий избежать методических проблем, связанных с трактовкой терминов, а также обеспечить эффективное использование возможностей UML.

Список литературы

    ГОСТ 34.601-90 "АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ. СТАДИИ СОЗДАНИЯ";

    ГОСТ 34.602-89 "ТЕХНИЧЕСКОЕ ЗАДАНИЕ НА СОЗДАНИЕ АВТОМАТИЗИРОВАННОЙ СИСТЕМЫ";

    ГОСТ 34. 201-89. ВИДЫ, КОМПЛЕКТНОСТЬ И ОБОЗНАЧЕНИЕ ДОКУМЕНТОВ ПРИ СОЗДАНИИ АВТОМАТИЗИРОВАННЫХ СИСТЕМ;

    ГОСТ 34.003-90. "АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ";

    IBM/RATIONAL UNIFIED PROCESS;

    ГОСТ Р ИСО/МЭК 15026-2002. ИНФОРМАЦИОННАЯ ТЕХНОЛОГИЯ. УРОВНИ ЦЕЛОСТНОСТИ СИСТЕМ И ПРОГРАММНЫХ СРЕДСТВ;

    РД 50-34.698-90. "АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ. ТРЕБОВАНИЯ К СОДЕРЖАНИЮ ДОКУМЕНТОВ";

    ГОСТ 28806-90. ГОСТ КАЧЕСТВО ПРОГРАММНЫХ СРЕДСТВ. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ;

Перед проектированием информационной системы необходимо определиться с предъявляемыми к ней требованиям. Можно выделить следующие группы требований: к функциональности, к эргономичности, к надежности, к производительности, к сопровождению.

Функциональные требования

Одними из наиболее значимых требований, предъявляемых при выборе информационных систем, являются требования к функциональности. Разрабатываемая информационная системы должна обладать следующими свойствами:

Адаптивность - означает приспосабливаемость системы к условиям конкретной предметной области. Необходимо, поскольку может использоваться совместно с другими информационными системами.

Структурность - определяет наличие установленных связей и отношений между элементами внутри системы, распределение элементов системы по уровням и иерархиям.

Целостность - означает то, что все элементы системы функционируют как единое целое.

Разрабатываемая информационная система должна предоставлять следующие возможности:

Следить за состоянием документа на любой его стадии;

Получать исчерпывающую информацию о документе;

Хранить данные о документах

Кроме того информационная система должна обеспечивать возможности по ведению базы данных о клиентах и основных предоставляемых услугах.

Кроме того к функциональным требованиям можно отнести и требования по безопасности. Разрабатываемая информационная система должна быть хорошо защищена от воздействия извне.

Для обеспечения безопасности можно использовать как аппаратные, так и программные средства защиты информации.

Требования к удобству использования

Другими важными требованиями, предъявляемые к информационным системам, являются требования по эргономичности.

Под эргономичностью на сегодняшний день подразумевают общую степень удобства предмета, экономию времени и энергии при использовании предмета.

К разрабатываемой информационной системе можно предъявить несколько видов требований по эргономичности.

По поводу человеческого фактора.

Система не должна быть ориентирована на профессионального пользователя, поскольку пользователями в основном будут являться сотрудники отделов организации, чья специфика деятельности, далека от информационных технологий. Данным сотрудникам вовсе не обязательно знать работу компьютера в совершенстве. Кроме того разрабатываемая система должна максимально упрощать процессы обработки документации и работа с ней не должна вызывать сложностей. Интерфейс программного продукта необходимо сделать максимально удобным и попытаться достичь такого результата, чтобы он понимался интуитивно.

По поводу справочной системы.

Наличие подробной справочной системы вовсе необязательно, поскольку из-за потока документации у сотрудников вовсе не будет возможности изучать справку по работе с программой. Но в тоже время она необходима, поскольку пользователь может забыть некоторые аспекты работы с программой. Рекомендуется создать руководство пользователя.

По поводу документации.

Из документации по программному продукту необходимым является только инструкция пользователю. Остальная документация просто не будет использоваться при работе с программным продуктом.

Требования к надежности

Любая информационная система должна быть надежной. Необходимо достичь таких результатов, чтобы сбои случались крайне редко и при этом не приводили к повреждению базы данных или не работоспособности других клиентских приложений. Связана такая необходимость опять-таки со спецификой организации.

В случае если все-таки сбой произошел, информационная система, после сбоя должна самостоятельно восстановиться с минимальной потерей данных, причем в довольно сжатые сроки, поскольку поток клиентов может быть довольно велик. Для восстановления работы системы должно хватать ее перезапуска, но никак не переустановке всей системы. Кроме того сбой в работе информационной системы не должен повлиять на работы сторонних программных продуктов.

Работа разрабатываемой информационной системы должна быть довольно предсказуема.

Требования к производительности

Также можно выделить следующие требования по поводу производительности информационной системы:

Разрабатываемая система должна быть довольна, производительна и не занимать много системных ресурсов. Ее использование не должно приводить к замене уже имеющихся аппаратных устройств, а именно системного блока компьютера. Время отклика работы программы должно быть минимальным исходя из возможностей компьютерной техники, поскольку работа с операционными документами производиться постоянно и является необходимым условием функционирования любой организации.

Поскольку разрабатывается информационная система работа, которой предполагается в нескольких отделах отделения, ресурсы системы должны быть доступны, но в тоже время защищены от не санкционированного доступа.

Требования возможности сопровождения

Можно выделить следующие требования по поводу возможности сопровождения информационной системы:

Разрабатываемая информационная система должна быть адаптивной, поскольку в организации возможно использование нескольких программных продуктов на одной машине для выполнения различных обязанностей сотрудников. Поэтому информационная система не должна конфликтовать с программными продуктами сторонних разработчиков.

Также немало важным свойством информационной системы должно быть ее расширение. Должна иметься возможность дальнейшего расширения функциональности информационной системы, поскольку реализация полноценного программного продукта решающего все проблемы бумажного документооборота в рамках дипломного проекта практически невозможно.

Конфигурирование информационной системы должно быть минимальным и касаться довольно стандартных вещей, в основном вида или отражаемых документов. Но данное требование относиться больше как к дополнительным пожеланиям, нежели как обязательное требование.

Выводы

В результате анализа существующих программных средств были отражены положительные стороны, использования программных средств. Разработка нового программного продукта позволит фирме не только полностью адаптировать программный продукт под деятельность фирмы (а не наоборот как это часто бывает при внедрении автоматизированных систем), но и снизить затраты связанные с приобретением программного продукта. Все разработчики программных продуктов не продают права на использования, а как бы сдают в аренду, что накладывает обязательства на приобретение ежегодной лицензии. В случае если турфирма не слишком большая это довольно скромная сумма порядка 6 тысяч рублей, но в случае если необходимо устанавливать данный программный продукт на множество компьютеров, тогда эта сумма значительно возрастает даже с учетом предоставляемых скидок. Таким образом, для средних и крупных турфирм рекомендуется разработка собственных программных продуктов в области туризма.

Акроним FURPS обозначает следующие категории требований:

  • Functionality (Функциональность)
  • Usability (Применимость)
  • Reliability (Надежность)
  • Performance (Производительность)
  • Supportability (эксплуатационная пригодность).

Символ "+" расширяет FURPS-модель, добавляя к ней:

  • ограничения проекта,
  • требования выполнения,
  • требования к интерфейсу,
  • физические требования,

часть из которых уже была рассмотрена выше.

Кроме того, в спецификациях RUP выделяются такие категории требований, как

  • требования, указывающие на необходимость согласованности с некоторыми юридическими и нормативными актами;
  • требования к лицензированию,
  • требования к документированию.

FURPS (Functionality Usability Reliability Performance Supportability: функциональность, удобство использования, надежность, производительность, удобство сопровождения)- классификация требований к программным системам, разработанная в Hewlett-Packard. Согласно классификации, все требования подразделяются на 5 категорий, непосредственно следующих из составляющих наименования классификации. В настоящее время используется, как составная часть более общей классификации FURPS+.

Требования к программной системе часто классифицируются как:

Функциональные требования – это перечень сервисов, которые должна выполнять система, причём должно быть указано, как система реагирует на те или иные входные данные, как она ведёт себя в определённых ситуациях и т.д. В некоторых случаях указывается, что система не должна делать.

Нефункциональные требования описывают характеристики системы и её окружения, а не поведение системы. Здесь также может быть приведён перечень ограничений, накладываемых на действия и функции, выполняемые системой. Они включают временные ограничения, ограничения на процесс разработки системы, стандарты и т.д.

Требования предметной области характеризуют ту предметную область, где будет эксплуатироваться система. Эти требования могут быть функциональными и не функциональными.

Нефункциональные требования не связаны непосредственно с функциями, выполняемыми системой. Они связаны с такими интеграционными свойствами системы, как надёжность, время ответа или размер системы. Кроме того, нефункциональные требования могут определять ограничения на систему, например на пропускную способность устройств ввода-вывода, или форматы данных, используемых в системном интерфейсе.

Многие функциональные требования относятся к системе в целом, а не к отдельным её средствам. Это означает, что они более значимы и критичны, чем отдельные функциональные требования. Ошибка, допущенная в функциональном требовании, может снизить качество системы, ошибка в нефункциональных требованиях может сделать систему неработоспособной.

Вместе с тем нефункциональные требования могут относиться не только к самой программной системе: одни могут относиться к технологическому процессу создания ПО, другие – содержать перечень стандартов качества, накладываемых на процесс разработки.

Нефункциональные требования отображают пользовательские требования: при этом они основываются на бюджетных ограничениях, учитывают организационные возможности компании-разработчика и возможность взаимодействия разрабатываемой системы с другими программными и вычислительными системами, а также такие внешние факторы, как правила техники безопасности, законодательство о защите интеллектуальной собственности и т.п.

Все нефункциональные требования делятся на три большие группы:

Требования к продукту. Описывают эксплуатационные свойства программного продукта. Сюда относятся требования к производительности системы, объёму необходимой памяти, надёжности (определяет частоту возможных сбоев в системе), переносимости системы на разные компьютерные платформы и удобству эксплуатации.

Организационные требования. Отображают политику и организационные процедуры заказчика и разработчика ПО. Они включают стандарты разработки программного продукта, требования к реализации ПО (т.е. к языку программирования и методам проектирования), выходные требования, которые определяют сроки изготовления программного продукта, и сопутствующую документацию.

Внешние требования. Учитывают факторы, внешние по отношению к разрабатываемой системе и процессу её разработки. Они включают требования, определяющие взаимодействие данной системы с другими системами, юридические требования, следование которым гарантирует, что система будет разрабатываться и функционировать в рамках существующего законодательства, а также этические требования. Последние должны гарантировать, что система будет приемлемой для пользователей или заказчика.