Что такое предельно допустимая концентрация. Смотреть что такое "ПДК" в других словарях

Основные понятия и методика установления ПДК

Общие положения . К основным нормированным показателям количества вредных веществ, допустимых с точки зрения безопасности человека, относятся ПДК (предельно допустимая концентрация), ОБУВ (ориентировочный безопасный уровень воздействия), ОДК (ориентировочное допустимое количество) и ОДУ (ориентировочно допустимый уровень). Последние три – временные характеристики, подменяющие предельно допустимую концентрацию загрязняющего вещества до ее установления.

Существует несколько видов ПДК загрязняющих веществ в разных компонентах среды: в атмосферном воздухе, в воде природных и искусственных водоемов, в почве. Гигиенические ПДК устанавливаются на вредные вещества в пищевых продуктах. Кроме того, существуют ПДК вредных веществ в организме человека. Последние представляют собой уровень вредного вещества (или продуктов его превращения) в организме (в крови, моче и др.) или уровень биологического ответа наиболее поражаемой системы организма (например, содержание гемоглобина), при котором непосредственно в процессе воздействия или в отдельные периоды жизни настоящего и последующего поколений не возникает заболеваний или отклонений в состоянии здоровья, устанавливаемых современными методами исследований. Данное определение не распространяется на радионуклиды и биологические вещества, представленные сложными биологическими комплексами, а также на бактерии и микроорганизмы.

Временные нормативы на содержания загрязняющих веществ имеют следующие обозначения: ОБУВ – для атмосферного воздуха и водоемов рыбохозяйственного назначения, ОДК – в почве, ОДУ в воде хозяйственно-питьевого и культурно-бытового назначения.

Несмотря на разнородность (различное физическое и химическое состояние) перечисленных сред при разработке ПДК используются единые принципы, которые можно сформулировать следующим образом:

1) в основу разработки закладывается только биологический принцип (в данном случае - воздействие на человека или гидробионтов);

2) используются экспериментальные и натурные исследования, результаты которых гармонизируются;

3) в основу положена трехкоординатная система «доза-время-эффект» с нахождением вероятностных количественных порогов вредного действия;

4) из всего комплекса первичных, вторичных и опосредованных эффектов выделяется лимитирующий;

5) нормирование осуществляется с учетом предполагаемой физиологической адаптации человека.

По характеру воздействия на организм человека вредные химические вещества могут вызывать следующие эффекты:

1) токсические - ядовитость, т. е. способность вещества оказывать вредное действие на организм;

2) раздражающие - проявляющиеся в раздражающем воздействии на те или иные органы человека;

3) сенсибилизирующие (аллергические) - вредная для организма чрезмерная иммунная реакция на вещества (аллергены), которые, как правило, нетоксичны;

4) канцерогенные - вызывающие злокачественные новообразования;

5) мутагенные - оказывающие влияние на наследственность через скачкообразное, спонтанное и ненаправленное изменение наследственности;

6) различные эффекты, влияющие на репродуктивную функцию человека;

7) тератогенные - ведущие к возникновению пороков развития и уродств у потомства человека, животных, растений.

Проникновение химических веществ в организм человека осуществляется через:

1) органы дыхания;

2) желудочно-кишечный тракт;

3) кожные покровы и слизистые оболочки.

В современном нормировании при установлении допустимых концентраций вредных веществ используют принцип пороговости действия или принцип приемлемого риска. Принцип пороговости действия - выявление минимальной концентрации вредного вещества, вызывающей интоксикацию организма, - является основой гигиенического нормирования. На нем построена система оценки результатов экспериментально-биологических исследований. Принцип приемлемого риска используется в беспороговой модели для оценки мутагенного и канцерогенного действия с отдаленными последствиями, когда невозможно установить количественную связь между силой действия и эффектом в связи с отсутствием экспериментальных данных. В этом случае определение риска основано на вероятностном подходе. Данный принцип используется также при нормировании экологических рисков.

В целом же экологические нормативы должны лежать за пределами действующих доз, т.е. основой, по мере возможности, должен служить принцип пороговости. Исследованием механизмов и, главное, последствий химического, физического и биологического воздействия на живые организмы, прежде всего на человека, занимается экотоксикология.

Экологическая токсикология - наука о потенциальной опасности вредного воздействия веществ на живые организмы и экосистемы, о реакциях живых существ на контакт с химическими агентами. Она относится к разделу медицины о физических, химических свойствах ядов и их действии на живые организмы, а также о средствах предупреждения и лечения отравлений.

Исследуя проблемы вредного воздействия химических веществ на организм человека, необходимо помнить, что еще в эпоху Возрождения врач и естествоиспытатель Парацельс (1493-1541) писал: «Все есть яд и ничего не лишено ядовитости». Иными словами, одно и то же вещество может быть ядом, лекарством и необходимым для жизни средством. Все зависит от концентраций, вмещающих сред и условий взаимодействия с живыми организмами. Применительно к экологии, в частности к экологическому нормированию, необходимо четко представлять, при каких условиях обычное химическое вещество в окружающей среде переходит в категорию загрязняющего (вредного).

Способы проникновения вредных веществ в организм. Прямое вредное воздействие загрязняющего химического вещества возможно лишь в случае его попадания в организм. Известно несколько путей проникновения вредных веществ в организм человека и животных.

1) Пероральный путь подразумевает поступление химических веществ через желудочно-кишечный тракт с пищей и водой. Они всасываются в кровь из ротовой полости (особенно это характерно для фенолов и цианидов) или из желудочно-пищевого тракта. В желудке резорбции (т. е. всасыванию) вещества активно способствует желудочный сок.

2) Ингаляционный путь - поступление через дыхательные органы. Динамика поступления в организм этим путем определяется агрегатным состоянием вредного вещества, которое может находиться в пыли, тумане, дыме или в составе газовой фазы. Это наиболее быстрый путь проникновения в организм, что обусловлено огромной площадью поверхности легочных альвеол (до 100–120 м 2) и непрерывным током крови по легочным капиллярам. Активность проникновения вещества в кровь зависит от его растворимости. Место осаждения аэрозолей в дыхательных путях человека обусловлено величиной частиц: крупные частицы (диаметром более 10 мкм) чаще осаждаются в носоглотке; дисперсные (2-10 мкм) остаются в верхних дыхательных путях; тонкодисперсные (менее 2 мкм) попадают в альвеолярную область. Для носоглотки и верхних дыхательных путей существует достаточно эффективный способ очищения от твердых частиц - движение со слизью вверх, однако и в этом случае происходит частичное растворение химических веществ, их проникновение в кровь.

3) Накожный путь - поступление вредных веществ через кожу (площадь поверхности кожи человека 2 м 2), в основном через сальные железы, устья протоков потовых желез, через волосяные флолликулы. Особенно активно проникают под кожу вещества с высокой степенью растворимости в жирах.

Преобладающий путь поступления вредного вещества в организм зависит от его химических свойств и агрегатного состояния. Для газообразных веществ основной путь - ингаляционный; для твердых - пероральный и ингаляционный; для жидких - пероральный и накожный. Поэтому можно рекомендовать соответствующие способы защиты человека от вредных химических веществ в зависимости от их свойств и состояния, что входит в задачи активно развивающейся в последнее время экологической токсикологии.

Основные токсикометрические характеристики . При рассмотрении методологии разработки ПДК вредных веществ нам необходимо познакомиться с некоторыми токсикометрическими характеристиками и параметрами, используемыми для количественной оценки токсичности веществ.

Степень токсичности - это абсолютное количество или доза поллютанта, вызывающие определенный биологический эффект, те или иные патологические изменения. Уровень дозы - доза за единицу времени. Неблагоприятный эффект воздействия вредного вещества может проявляться в форме гибели или функциональных изменений организма. В первом случае для оценки используют понятие «летальная доза» . Функциональные изменения обозначают через понятие «действующие дозы и концентрации» , которые вызывают признаки интоксикации организма, а также через пороговые и недействующие величины. В связи с этим ниже даются определения некоторых из них.

Пороговая доза (порог однократного действия) - это наименьшее количество вещества, вызывающее при однократном воздействии такие изменения в организме, которые обнаруживаются с помощью специальных биохимических или физиологических тестов при отсутствии внешних признаков отравления. Недействующая доза - это максимальное количество вещества, не приводящее к каким-либо изменениям в организме.

Токсическая несмертельная доза (ЕД) вызывает видимые проявления отравления без летального исхода. Токсическая смертельная (летальная) доза (ЛД) или концентрация (ЛК) вызывает отравления, заканчивающиеся гибелью организма.

В практике экотоксикологии используют три количественные оценки:

1) ЛД min (ЛК min) - гибель отдельных особей;

2) ЛД 100 (ЛК 100) - гибель всех особей;

3) ЛД 50 (ЛК 50) - гибель 50% особей.

В экспериментально-биологических исследованиях применяют два основных подхода. Первый – кратковременное воздействие, которое приводит к острым отравлениям. В длительном эксперименте используют понятие хронического отравления, т. е. заболевания, развивающегося в результате систематического воздействия таких доз вредного вещества, которые при однократном поступлении в организм не вызывают отравления. Отсюда вытекает два значения пороговых концентраций: для однократного (C мин. остр.) и хронического (C мин. хрон.) воздействий. Таким образом, все перечисленные выше параметры характеризуют токсичность вещества.

В дополнение к этому мы рассмотрим ряд токсикометрических величин, определяющих вероятность угрозы отравления. Они используются при установлении класса опасности вредных веществ.

Зона однократного острого действия - диапазон концентраций вредного вещества между средней летальной дозой и пороговой концентрацией для однократного воздействия:

Z остр. = .

При этом чем меньше диапазон между смертельной и пороговой концентрациями, т. е. чем меньше значение Z AC , тем токсичнее вещество.

Зона хронического действия – диапазон между пороговыми концентрациями для однократного и хронического воздействия:

Z CH = .

Чем шире эта зона (чем больше значение Z CH ), тем выше опасность, поскольку возрастает угроза накопления вещества в организме.

Коэффициент возможности ингаляционного отравления (КВИО) представляет собой отношение максимально достижимой концентрации вредного вещества в воздухе при 20°С к средней смертельной концентрации для мышей:

КВИО = .

Высокое значение коэффициента указывает на способность вещества создавать токсичные концентрации.

Коэффициент кумуляции характеризует степень накопления данного вещества в организме человека. Он представляет отношение суммарной дозы, полученной организмом при многократном введении среднесмертельной дозы вещества, к той же величине, но при однократном введении:

К К = .

Естественно, что с увеличением коэффициента возрастает опасность вещества.

Классы опасности вредных веществ. Необходимо отметить, что все вредные вещества в зависимости от степени их негативного влияния относятся к тому или иному классу опасности. Однако одно и то же вещество может иметь разный класс в зависимости от вмещающей его среды (почва, вода, атмосферный воздух, сырье, продукты питания и т.д.), что обусловлено его физико-химическими свойствами, определяющими проявление вредных эффектов. Приведем классификацию и изложим общие принципы установления класса опасности веществ, находящихся в сырье, продуктах, полупродуктах и отходах производства, т. е. в материальных результатах хозяйственной деятельности человека.

Такой подход регламентирован ГОСТ 12.1.007-76 «Вредные вещества. Классификация и общие требования безопасности». В соответствии с ним по степени воздействия на организм выделяют четыре класса опасности вредных веществ:

1) 1-й класс - вещества чрезвычайно опасные;

2) 2-й класс - вещества высоко опасные;

3) 3-й класс - вещества умеренно опасные;

4) 4-й класс - вещества малоопасные.

Класс опасности устанавливается в зависимости от норм и показателей, рассмотренных нами выше и указанных в табл. 3. Отнесение вредного вещества к тому или иному классу проводится по показателю, значение которого соответствует наиболее неблагоприятному классу опасности.

Комбинированное и комплексное воздействие химических веществ на организм. Многообразие химических веществ, встречающихся в окружающей среде, предопределяет возможность комбинированного действия поллютантов на организм человека или животного. Например, в присутствии метана с помощью микроорганизмов происходит метилирование ртути, что резко увеличивает ее токсичность. Соли тяжелых металлов, а также активный хлор образуют комплексные соединения с гумусовыми веществами. В первом случае образуются металлфульваты, более токсичные, чем исходные вещества. Но особенно опасен синтез хлорфульватов, характеризующихся канцерогенным действием. Напротив, в водной среде в присутствии органических соединений тяжелые металлы образуют комплексные органические соединения, что снижает их токсичность.

Таблица 3 . Классы опасности вредных веществ

Показатели Нормы для классов опасности
ПДК вредных веществ в воздухе рабочей зоны, мг/м 3 <0,1 0,1–1,0 1,1–10,.0 >10,0
Средняя смертельная доза, мг/кг:
при введении в желудок <15 15–150 151–5000 >5000
при нанесении на кожу <100 100–500 501–2500 >2500
Средняя смертельная концент-рация в воздухе, мг/ м 3 <500 500–5000 5001–50000 >50000
Коэффициент возможного ингаляционного отравления (КВИО) >300 300–30 29–3 <3
Зона острого действия <6,0 6,0–18,0 18,1–54,0 >54,0
Зона хронического действия >10 10–5,0 4,9–2,5 <2,5

Принимая во внимание перечисленные выше эффекты, для оценки уровня загрязнения объектов окружающей среды перспективно использование комплексных гигиенических нормативов – интегральных величин с учетом всех вредных веществ в среде. Однако в силу несовершенства методики при разработке подобных нормативов возникают серьезные трудности. Одна из них заключается в необходимости создания современной экспериментальной базы с возможностью проведения большого количества дорогостоящих опытов на животных и дальнейшей экстраполяцией результатов на человека. В настоящее время у нас есть возможность надежной количественной оценки совместного воздействия лишь отдельных (как правило, не более двух) загрязняющих веществ.

Таким образом, можно выделить комбинированное и комплексное действие вредных веществ на организм. К основным видам комбинированного действия относят:

1) суммирование (аддитивность), когда суммарный эффект смеси равен сумме эффектов действующих компонентов (А и В ) и его можно оценить по зависимости

А + В = 1;

2) сверхсуммирование или потенцирование (синергизм), когда наблюдается непропорциональное усиление эффектов:

А + В > 1;

3) антагонизм или ингибирование, т. е. снижение воздействия одного или обоих веществ в результате их взаимовлияния:

А + В < 1;

4) независимое действие веществ - комбинированное действие не отличается от изолированного действия каждого яда и преобладает эффект наиболее токсичного вещества:

А =1; В =1.

Последний вариант действия веществ - наиболее общий и часто встречающийся на практике. Все остальные относятся к частным случаям независимого действия. В качестве примера аддитивности можно привести воздействие раздражающих газов на организм человека (хотя для некоторых газов существует вероятность потенцирования) или наркотическое действие смеси углеводородов. Потенцирование отмечено при совместном действии бутилакрилата и метилакрилата. Пример независимого действия - смесь бензолов и раздражающих газов. При воздействии тяжелых металлов может проявляться эффект как суммирования, так и антагонизма.

На практике эффект суммации учитывается посредством оценки концентрации через нормирование по веществу, относящемуся к наиболее неблагоприятному классу опасности:

С ПР = С 1 +С 2
,

где С ПР - приведенная концентрация вещества, характеризующая всю группу загрязняющих веществ, действующих по принципу суммации.

Эффект полной суммации воздействия вредных веществ учитывается также посредством расчета коэффициента действия:

К Д =
,

тогда при К Д > n

С i = ,

т. е. величина ПДК при изолированном действии уменьшается пропорционально отношению коэффициента К Д к числу веществ n .

Комплексное действие проявляется в том случае, когда проникновение одного и того же вещества в организм человека происходит разными способами. Например, поступление вредного вещества может осуществляться одновременно пероральным и ингаляционным путями. В практике нормирования это указывает на необходимость оценки удельного значения каждого фактора внешней среды в общей максимально допустимой дозе. Для оценки комплексного действия химических веществ рекомендуется использовать формулу суммационного эффекта

£ 1,

где С – концентрация вредного вещества в атмосферном воздухе, воде, продуктах питания соответственно;

ПДК атм, ПДК в, ПДК пищ – предельно допустимая концентрация вредного вещества в атмосферном воздухе, воде, продуктах питания соответственно.

Практика разработки ПДК – критерии необходимости и методы. Химические вещества, внедряемые в хозяйственную деятельность, подлежат обязательной токсикологической оценке и гигиеническому регламентированию. Объем сведений, необходимых для этого, зависит от физико-химических свойств вещества, степени его токсичности и опасности, масштабов производства, числа контактирующих с ним людей, актуальности для экономики страны, распространенности в объектах окружающей среды, а также ряда других показателей, имеющих значение для оценки возможности влияния вещества на здоровье человека. В практике санитарно-гигиенического нормирования используется дифференцированный подход к выявлению необходимости установления нормативов и достаточности объема получаемой для этого информации. Обоснование выбора вещества для выполнения гигиенического нормирования состоит из четырех этапов.

На первом этапе осуществляется сбор информации, необходимой и достаточной для решения вопроса о целесообразности проведения исследований по установлению гигиенических нормативов. Информация включает данные об объемах производства и применении веществ, характеристику физико-химических свойств, токсикологические показатели.

На втором этапе на основе анализа имеющихся данных определяются вещества, не нуждающиеся в разработке гигиенических нормативов в соответствии с обозначенными критериями: объемами производства и направлениями использования, физико-химическими свойствами и др. Например, нет необходимости устанавливать ПДК для веществ, попадание которых в атмосферный воздух невозможно в силу их физико-химических характеристик. Не имеет смысла разработка ПДК нестабильных в воде соединений, при трансформации которых образуются ингредиенты с установленными гигиеническими нормативами.

На третьем этапе намечаются очередность и объем работ, необходимых для ускоренной оценки нормативов без проведения принятых токсиколого-гигиенических исследований. Это целесообразно для малоопасных неустойчивых соединений, гомогенных веществ с уже установленными нормативами или при наличии экспериментально обоснованных ПДК этих веществ в других средах. Особо оговариваются критерии ускоренного нормирования химических соединений, которые могут быть опасны по канцерогенному и мутагенному действию.

На четвертом этапе принимается решение о разработке гигиенических нормативов для наименее изученных веществ, представляющих экологическую опасность, на основе проведения полного комплекса принятых токсиколого-гигиенических исследований.

На практике методы установления ПДК развиваются по двум основным направлениям:

1) экспериментально-биологическое направление, базирующееся на изучении развития стадий интоксикации организма;

2) расчетно-экспериментальное направление, в котором обоснование установления норматива основывается на принципах корреляционных зависимостей между биологическим действием веществ и их физико-химическими свойствами.

Основным прямым методом разработки предельно допустимых концентраций вредных веществ является лабораторно-токсикологический эксперимент . При экспериментальной оценке ПДК решающее значение имеют результаты токсикологических исследований на подопытных животных: крысах, мышах, морских свинках, кроликах, собаках и др.

Экспериментальные исследования по своим целям делятся на три вида: острые - время воздействия не превышает нескольких дней, подострые - время достигает одного месяца, и хронические - время затравки составляет 5–6 месяцев.

Пути введения веществ в организм выбираются исходя из реальных свойств тестируемого вредного вещества. Опыты ориентированы на выявление зависимости время–доза–эффект. Для экспериментального обоснования ПДК решающее значение имеют результаты хронических опытов не менее чем на двух животных. Исключение составляет лишь установление максимальных разовых концентраций в воздухе, что проделывается на основе острых экспериментов. По результатам хронических экспериментов устанавливают пороговые концентрации. Переход от них к ПДК осуществляется через коэффициент запаса, на который делится пороговое значение. Реально коэффициент запаса может меняться от 3 до 20 в зависимости от характера вредного вещества, путей поступления его в организм и результатов экспериментов. Величина коэффициента увеличивается с ростом абсолютной токсичности, значения КВИО, кумулятивных свойств, а также с уменьшением зоны острого действия, при значительных различиях в видовой чувствительности и выраженном кожно-резорбтивном действии.

Определение значений параметров острой, подострой и хронической токсичности осуществляется в соответствии с методическими инструкциями, в которых регламентируются порядок и условия проведения экспериментов.

Методы расчетно-экспериментального направления сейчас активно внедряются в практику экотоксикологии. Это обусловлено прежде всего высокой стоимостью установления и обоснования ПДК, что связано, в частности, с длительностью экспериментов. Ежегодно в мире синтезируются от 10 до 25 тысяч новых соединений. Очевидно, что нереально обосновать ПДК для каждого из веществ. Эти доводы подчеркивают актуальность развития расчетно-экспериментального направления.

Как указывалось выше, данный метод базируется на сопоставлении физико-химических свойств веществ, молекулярной структуры, их кумулятивных характеристик в разных компонентах окружающей среды. Широко используются методы интерполяции и экстраполяции. Применение расчетно-экспериментального подхода направлено на обоснование ОДК, ОДУ и ОБУВ. В практике ЭН ориентировочные величины устанавливаются на этапе разработки ПДК на определенный срок: в атмосферном воздухе - на два, в воде - на три года.

Разработка ПДК вредных веществ сопряжена с проблемами методического характера, которые в известной степени снижают достоверность результатов и иногда приводят к занижению или завышению (что значительно реже) нормативных значений. В первом случае это ведет к экономическим потерям, обусловленным необходимостью соблюдения заниженных норм или принципиальной невозможностью их обеспечения в реальных условиях в силу более высоких фоновых значений, во втором - к риску негативного воздействия на человека. Выделим и другую не менее существенную проблему: отдаленные последствия вредных воздействий, прогноз которых далеко не всегда может быть достаточно достоверным, даже по результатам хронических экспериментов. В связи с этим в качестве основных задач в области разработки и обоснования ПДК выделяются:

1) совершенствование расчетных методов с целью использования результатов острых опытов для прогноза хронической токсичности;

2) разработка надежных методов исследования отдаленных последствий воздействия вредных веществ на человека;

3) совершенствование способов экстраполяции данных с животных на человека;

4) предложение более совершенных методик определения коэффициента запаса – величины шага от минимально действующей концентрации до ПДК;

5) обоснование методологии краткосрочных экспериментов;

6) развитие методов моделирования интоксикации, приближающих экспериментальные условия к натурным.

В целом же требования к гигиеническому нормированию отвечают основным принципам экологического нормирования - соответствие полученных данных современному научно-методическому уровню, наличие доступного химико-аналитического метода определения вещества с необходимым порогом обнаружения, подготовка технических регламентов и их принятие.

Экологические проблемы все острее стоят перед современным человечеством. Особенно серьезным вопросом является качество воздуха, который загрязняют выхлопные газы и выбросы промышленных предприятий. Чтобы встретить врага во всеоружии, следует ознакомиться с ПДК вредных веществ в воздухе.

ПДК вредных веществ в атмосферном воздухе

Что же такое ПДК ? ПДК – это предельно допустимая концентрация химических элементов и их соединений в воздухе, которая не вызывает негативных последствий у живых организмов. Нормативы предельно допустимых концентраций вредных веществ утверждаются в законодательном порядке и контролируются санитарно-эпидемиологическими службами (в России – Роспотребнадзором) при помощи токсикологических исследований. ПДК каждого опасного для здоровья вещества входит в ГОСТы, соблюдение которых является обязательным. В случае нарушения норм ПДК каким-либо предприятием на него налагают штраф или вовсе закрывают. Предельно допустимая концентрация устанавливается для людей, которые наиболее подвержены влиянию химикатов (детей, пожилых людей, людей с заболеваниями дыхательной системы и т.д.). Величина ПДК для воздуха измеряется в мг/м3, также предельно допустимая концентрация существует для воды, почвы и продуктов питания.

ПДК вредных веществ в атмосферном воздухе бывает разная:

  • ПДК МР – максимальная разовая концентрация вещества. Она не должна влиять на живые организмы в течение 20–30 минут.
  • ПДК СС – среднесуточная концентрация. Эта ПДК не должна оказывать отрицательного воздействия на живые организмы в течение неопределенно долгого времени.

Классы опасности веществ

По степени воздействия на организм вредные вещества подразделяются на четыре класса опасности. Для каждого класса опасности установлена своя ПДК. Выделяют следующие классы опасности веществ в атмосферном воздухе:

  1. вещества чрезвычайно опасные (ПДК менее 0,1 мг/м3);
  2. вещества высокоопасные (ПДК 0,1–1 мг/м3);
  3. вещества умеренно опасные (ПДК 1,1–10 мг/м3);
  4. вещества малоопасные (ПДК более 10 мг/м3).

Также существует классификация вредных веществ по эффекту воздействия на живой организм. При этом некоторые вещества относятся сразу к нескольким классам:

  • Общетоксические – вещества, вызывающие отравление организма в целом. При их воздействии наблюдаются судороги, расстройства нервной системы, паралич.
  • Раздражающие – вещества, поражающие кожу, слизистую оболочку дыхательных путей, легких, глаз, носоглотки. Длительное воздействие приводит к нарушениям дыхания, интоксикации и летальному исходу.
  • Сенсибилизаторы – химикаты, вызывающие аллергическую реакцию.
  • Канцерогены – одна из самых опасных групп веществ, провоцирующая возникновение онкологических заболеваний.
  • Мутагены – вещества, изменяющие генотип человека. Они снижают сопротивляемость организма к заболеваниям, вызывают раннее старение и могут сказаться на здоровье потомства.
  • Влияющие на репродуктивное здоровье – вещества, вызывающие отклонения в развитии у потомства (необязательно в первом поколении).

Ниже приведена таблица ПДК некоторых вредных веществ в атмосферном воздухе, установленной в Российской Федерации:

Оксид углерода (СО)

Еще одно название оксида углерода, угарный газ, знакомо нам с малых лет. Он часто встречается в быту – например, СО выделяется из-за неисправностей газовых колонок и кухонных плит. Для отравления этим газом нужна совсем небольшая его концентрация. У оксида углерода нет цвета и запаха, что делает его еще опаснее. Интоксикация происходит стремительно, человек может потерять сознание в считанные секунды. Несмотря на то, что класс опасности оксида углерода – четвертый, его воздействие приводит к летальному исходу буквально за несколько минут. Почувствовав трудности с дыханием, головную боль, отсутствие концентрации, снижение слуха и зрения, необходимо по возможности открыть все окна и двери и как можно быстрее покинуть помещение.

Аммиак (NH3)

Аммиак – бесцветный газ с резким, едким запахом. Большинству он известен в качестве десятипроцентного водного раствора – нашатырного спирта. Несмотря на то, что вдыхание паров аммиака имеет возбуждающее действие и помогает при обмороках, с этим газом следует быть осторожнее. Аммиак раздражает слизистую оболочку глаз, вызывает удушье, а при высокой концентрации приводит к ожогам роговицы и слепоте, поражает нервную систему вплоть до необратимых изменений, снижает когнитивные функции мозга, провоцирует возникновение галлюцинаций.

Ксилол (C8H10)

Ксилол относится к третьему классу опасности, он способен вызвать острые и хронические поражения кроветворных органов. Ксилол – это жидкость без цвета, но с характерным запахом, которая применяется как органический растворитель для изготовления пластмассы, лаков, красок, строительного клея. В малых концентрациях ксилол никак не вредит человеку, однако при длительном вдыхании паров ксилола появляется наркотическая зависимость. Также ксилол поражает нервную систему, вызывает раздражение кожного покрова и слизистой глаз.

Оксид азота (NO)

Оксид азота – токсичный бесцветный газ. Он не раздражает дыхательные пути, поэтому человеку сложно его почувствовать. NO взаимодействует с гемоглобином и образует метгемоглобин, который блокирует дыхательные пути и вызывает кислородное голодание. Взаимодействуя с кислородом, газ превращается в диоксид азота (NO2).

Диоксид серы (SO2)

Диоксид серы, или сернистый газ, отличается характерным запахом, похожим на запах горящей спички. Вдыхание SO2 даже в небольшой концентрации может привести к воспалению дыхательных путей, вызвать кашель, насморк и хрипоту. Длительное воздействие провоцирует возникновение дефектов речи, чувства нехватки воздуха, отека легких. Также возможно поражение легочной ткани, но оно проявляется только спустя несколько дней после воздействия. Люди с заболеваниями дыхательной системы, например , наиболее тяжело переносят влияние SO2.

Толуол (C7H8)

Толуол проникает в организм человека не только через органы дыхания, но и через кожу. Симптомы отравления толуолом – раздражение слизистой оболочки глаз, заторможенность, нарушения работы вестибулярного аппарата, галлюцинации. Также толуол крайне пожароопасен и обладает наркотическим воздействием. До 1998 года он входил в состав клея «Момент» и до сих пор содержится в некоторых растворителях для лаков и красок.

Сероводород (H2S)

Сероводород – бесцветный газ с запахом, напоминающим тухлые яйца. Будучи очень токсичным, H2S воздействует в первую очередь на нервную систему, вызывает сильные головные боли, судороги и может привести к коме. Смертельная концентрация сероводорода составляет примерно 1 000 мг/м3. При концентрации от 6 мг/м3 начинаются головные боли, головокружения и тошнота.

Хлор (Cl2)

Хлор в виде газа имеет желто-зеленый цвет и острый раздражающий запах. Одни из первых симптомов отравления хлором – покраснение глаз, приступы кашля, боль в груди, повышение температуры тела. Возможно развитие бронхопневмонии, бронхита. Будучи сильным канцерогеном, хлор провоцирует возникновение раковых опухолей и туберкулеза. При высокой концентрации летальный исход может наступить после нескольких вдохов.

Формальдегид (HCOH)

Содержание в воздухе особенно повышено в больших городах, поскольку он является продуктом горения топлива автотранспорта. Также выбросы формальдегида происходят на химических, кожевенных и деревообрабатывающих предприятиях. Он отрицательно воздействует на генетический материал, репродуктивную и дыхательную системы, печень, почки. Отравление начинается с возрастающего поражения нервной системы – с головокружения, чувства страха, дрожи, неровной походки и т.д. Формальдегид официально признан канцерогеном, однако также обладает аллергенным, мутагенным и сенсибилизирующим действием.

Диоксид азота (NO2)

Диоксид азота – ядовитый газ красно-бурого цвета с характерным острым запахом. Образуется он в результате сгорания автомобильного топлива, деятельности ТЭЦ и промышленных предприятий. На начальном этапе воздействия диоксид азота нарушает работу верхних дыхательных путей, а впоследствии способен вызвать бронхит, воспаление или отек легких. Наиболее опасен этот газ для людей, страдающих бронхиальной астмой и другими легочными заболеваниями. Из-за цвета диоксида азота его выбросы называют «лисьим хвостом». С лисой этот газ связывает не только цвет, но еще и хитрость: чтобы «спрятаться» от людей, он ухудшает обоняние и зрение, поэтому его не так-то просто обнаружить.

Фенол (C6H5OH)

Фенол – один из промышленных загрязнителей, который губителен для животных и человека. При вдыхании паров фенола возникает упадок сил, тошнота, головокружение. Фенол негативно влияет на нервную и дыхательные системы, а также на почки, печень и т.д. Использование фенола часто приводит к плачевным последствиям. В семидесятых годах в СССР его использовали при строительстве жилых домов. Люди, жившие в «фенольных домах», жаловались на плохое самочувствие, аллергию, возникновение онкологических заболеваний и на другие недуги. Хотя фенол-формальдегидные смолы используются при изготовлении мебели, строительных материалов и многого другого, недобросовестные производители могут превышать допустимую норму или применять некачественные химикаты.

Бензол (C6H6)

Бензол – опасный канцероген. При отравлениях парами бензола у человека наблюдается головная боль, тошнота, перепады настроения, нарушения сердечного ритма, иногда – обмороки. Постоянное воздействие бензола на организм проявляется усталостью, нарушениями функций костного мозга, лейкозом, анемией. Зачастую первый признак отравления бензолом – эйфория, так как вдыхание его паров имеет наркотический эффект. Данное химическое соединение входит в состав бензина, используется для производства пластмасс, красителей, синтетической резины.

Озон (O3)

Этот газ с характерным запахом, при высоких концентрациях имеющий голубой цвет, защищает нас от ультрафиолетового солнечного излучения. Озон является природным антисептиком, обеззараживает воду и воздух. Еще в пользу озона говорит то, что воздух после грозы, насыщенный озоном, кажется нам свежим и бодрящим. К сожалению, озон вызывает крайне неприятные последствия. Он усугубляет аллергию, обостряет сердечные заболевания, снижает иммунитет и вызывает нарушения дыхания. Озон действует медленно, но крайне губительно в долгосрочной перспективе – особенно опасен данный газ для детей, пожилых людей и астматиков.

Санитарная оценка воздушной среды проводится с учетом принципа раздельного нормирования загрязняющих веществ: устанавливаются разные ПДК- в воздухе рабочей зоны и в атмосферном воздухе населенных мест.

Для оценки качества воздуха на рабочем месте используется ПДК рабочей зоны (ПДК р.з.).

Предельно допустимая концентрация вредного вещества в воздухе рабочей зоны (ПДКр.з.) это максимальная концентрация, которая при продолжительности работы не более 41 часа в неделю на протяжении всего рабочего стажа не вызывает заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследования в процессе работы или в отдаленные сроки жизни настоящего и последующего поколений.

На территории предприятия устанавливается ПДК, равная 0,3 ПДКр.з.

Для атмосферного воздуха населенных мест устанавливаются ПДК среднесуточная (ПДКс.с.) и ПДК максимально разовая (ПДКм.р.), различающиеся между собой периодом осреднения проб.

Предельно допустимая концентрация максимально разовая (ПДК м.р.) это максимальная концентрация вредного вещества в воздухе населенных мест, не вызывающая при вдыхании в течение 20 минут рефлекторных (в том числе, субсенсорных) реакций в организме человека (ощущение запаха, изменение световой чувствительности глаз и др.).

Предельно допустимая концентрация среднесуточная (ПДК с.с.) — это максимальная концентрация вредного вещества в воздухе населенных мест, которая не должна оказывать на человека прямого или косвенного воздействия при неограниченно долгом вдыхании (круглые сутки в течение всей жизни).

Максимально разовая ПДК направлена на предупреждение рефлекторных реакций, которые возникают при кратковременном воздействии вредных веществ (например, ощущения запаха, кашля, чихания, слезотечения, першения в горле, рези в глазах, задержки дыхания и т.п.). Именно высокие кратковременные загрязнения токсичными веществами наносят значительный ущерб среде.

Среднесуточная ПДК предназначена для предотвращения хронического резорбтивного воздействия атмосферных загрязнителей, вызывающих общетоксический или специфические эффекты (гонадотоксический, эмбриотоксический, мутагенный, канцерогенный и др.). Возникновение резорбтивных эффектов зависит не только от концентрации вещества в воздухе, но и длительности вдыхания.

Атмосферные загрязнители воздуха в населенных пунктах действуют круглосуточно на все группы населения, включая детей и ослабленных лиц.

В условиях производства промышленные химические вещества воздействуют в течение рабочей смены на лиц трудоспособного возраста, проходящих предварительные (перед поступлением на работу) и периодические медицинские осмотры. В связи с этим критерии установления ПДК в воздухе рабочей зоны отличаются от критериев обоснования гигиенических нормативов атмосферных загрязнителей и ПДКс.с. более жесткие, чем ПДКр.з.


Для курортных зон устанавливается ПДК, равная 0,8 ПДКм.р.

При совместном присутствии в атмосферном воздухе нескольких веществ, обладающих суммацией действия (эффект суммации), сумма их концентраций, деленная на ПДК, не должна превышать единицы при расчете по формуле (1):

где С i - фактическая концентрация i- того вещества,

ПДК i - предельная допустимая концентрация i- того вещества.

Эффектом суммации обладают:

Аэрозоли оксида ванадия (V) и оксиды серы ;

Диоксид серы и диоксид азота;

Сильные минеральные кислота (серная, соляная и азотная);

- этилен , пропилен, бутилен и амилен.

ПДК загрязняющих веществ в воздухе зависит от класса опасности вещества, который определяется исходя из среднесмертельной дозы ЛД 50 при попадании в желудок, на кожу, при вдыхании и по другим показателям.

Выделяют четыре класса опасности веществ воздухе:

I — чрезвычайно опасные,

II — высокоопасные,

III — умеренно опасные,

IV — малоопасные.

Для веществ I и II классов опасность достижения токсических концентраций в случае превышения ПДК, как правило, наиболее высока.

Направленность биологического действия вещества характеризуется т.н. показателем вредности. Для загрязняющих веществ в водухе, как было указано выше, характерно рефлекторное и резорбтивное действие. Некоторые красящие вещества (красители), не оказывая на уровне низких концентраций ни рефлекторного, ни резорбтивного действия, при их осаждении из воздуха могут придавать необычную окраску объектам окружающей среды, например, снегу, создавая тем самым у человека ощущение опасности или санитарно-гигиенического дискомфорта. В связи с этим для красителей в качестве лимитирующего показателя устанавливается санитарно-гигиенический (сан.-гиг), который позволяет при соблюдении ПДК избежать появления необычной окраски объектов окружающей среды.

Существует перечень веществ, выброс которых в атмосферный воздух запрещен. Этот перечень в настоящее время включает 38 веществ, обладающих чрезвычайно высокой биологической активностью. К числу таких веществ относятся, в частности, алкалоиды красавки (атропин , скополамин , белладоин и др.), апилак, араноза, карминомицин, оливомицин, пыль наркотических анальгетиков, эметин гидрохлорид.

При определении влияния вредных веществ на человека, растительные и животные организмы, степени загрязненности окружающей среды, а также для проведения экологических экспертиз состояния окружающей среды или отдельных объектов или районов в мире пользуются понятием "качество природной среды". Нормативы качества выражаются в предельно допустимых концентрациях (ПДК) вредных веществ (поллютантов), предельно допустимых уровнях (ГДР), предельно допустимых выбросах (ПДВ), предельно допустимых экологических нагрузках (Гдень), максимально допустимом уровне (МГС), временно согласованных выбросах (ТБО) и ориентировочно безопасных уровнях воздействия (ОБУВ) загрязняющих веществ в различных средах.

Цель нормативов качества заключается в обеспечении научно обоснованного сочетания экологических и экономических интересов как основы общественного прогресса. Это вынужденный компромисс, что помогает развивать промышленность, охраняя жизнь и благополучие человека. Основой нормативов является три показателя: медицинский, технологический, научно-технический.

Медицинский показатель устанавливает предельный уровень угрозы здоровью человека. Технологический показатель оценивает уровень установленных границ техногенного воздействия на человека и среду обитания; научно-технический - возможность научно-технических средств контролировать соблюдение пределов воздействия по всем необходимым характеристикам.

Показатель ПДК, характеризующий качество окружающей среды в отношении здоровья человека, относится к нормативов санитарно-гигиенического характера.

Предельно допустимая концентрация (норматив) - количество вредного вещества в окружающей среде, которая при постоянном контакте или взаимодействия за определенный промежуток времени не влияет на здоровье человека и не вызывает нежелательных последствий у будущих поколений.

Этот вид нормирования охватывает не только экологическую, но и производственную, жилищно-бытовую сферу жизни человека. Впервые ПДК было введено в 1939 году. Для питьевой воды. К 1991 количество норм ПДК для водных объектов

хозяйственно-питьевого и культурно-бытового назначения достигла 1925 ПДК по атмосферы впервые были установлены в 1951 г.. для 10 вредных веществ. До 1991 г.. Их насчитывалось 479. ПДК в почве начали вводить с 1980

ПДК устанавливают главные санитарные инспекции в законодательном порядке или рекомендуют соответствующие учреждения, комиссии на основе результатов комплексных научных исследований, лабораторных экспериментов, а также сведений, полученных во время и после различных аварий на производствах, военных действий, природных катастроф с использованием длительных медицинских обследований людей на вредных производствах (химические производства, АЭС, шахты, карьеры, литейные цеха).

Для вычисления максимальной разовой ПДК используют высокочувствительные тесты, с помощью которых выявляют минимальные воздействия загрязнителей на здоровье человека в случае кратковременных контактов (измерения биопотенциалов головного мозга, реакция глаза и т.д.). С целью определения длительных воздействий загрязнителей (токсикантов) проводят эксперименты на животных, используют данные наблюдений во время эпидемий, аварий, добавляя к определенному порогового воздействия коэффициент запаса, снижает действие еще в несколько раз.

Чем вредны вещества, тем сложнее, масштабнее! и значительные усилия, направленные на охрану атмосферного воздуха. Для каждого вещества в Украине установлены два нормативы: максимальная разовая и среднесуточная ПДК.

Высокие значения содержания загрязняющих примесей в атмосферном воздухе, полученные при анализе многочисленных отобранных проб, называют максимальной разовой концентрации.

Максимальное разовое ПДК устанавливают с целью предотвращения рефлекторным реакциям у человека из-за раздражения рецепторов органов дыхания (восприятие неприятных запахов, чихание, аллергические явления, изменение биоэлектрической активности головного мозга, мировой чувственности глаз и прочее) по кратковременного действия (до 20 мин.) Атмосферных загрязнений. В связи с тем, что концентрации загрязнений в атмосферном воздухе не постоянны во времени и меняются в зависимости от метеорологических условий, рельефа местности, характера выброса, вида и интенсивности застройки и других причин, разовые пробы в соответствии с требованиями стандартов отбирают регулярно несколько раз в сутки в течение короткого промежутка времени (20-30 мин.).

Среднесуточную ПДК устанавливают для предупреждения общетоксического, канцерогенного, мутагенного и другой прямой или косвенного вредного воздействия на человека в условиях длительного (круглосуточного) вдыхание вещества. Среднесуточную концентрацию определяют как среднеарифметическое значение разовых концентраций, для которых указан срок времени отбора, или как среднее содержание вредных примесей в пробах атмосферного воздуха, отобранных в течение 24 часов. без перерыва или с одинаковыми интервалами между отборами. Отбор проб регламентировало ГОСТ 7.2.6.01-86.

С целью ограничения влияния на окружающую среду вредных видов антропогенной деятельности нормируют количество вредных веществ, выбрасываемых в воздух, почву, воду всеми типами загрязнителей, постоянно контролируют выбросы различных объектов, прогнозируя состояние окружающей среды и принимая соответствующие санкции и решения в отношении нарушителей законов об охране природы.

В Украине состояние окружающей среды контролирует несколько ведомств: основной контроль осуществляют Министерство здравоохранения, управления санитарно-эпидемиологической службы и др.; экологический контроль и экологическое нормирование - службы министерств коммунального хозяйства, рыбнадзора, геологии, общества охраны природы, "зеленые службы" Управление экологического мониторинга Министерства охраны окружающей природной среды.

Соответствии с действующим Законом "Об охране окружающей среды" (ст. 9) каждый гражданин Украины имеет право на безопасную для своей жизни и здоровья окружающую среду. Это право гарантировано, кроме мероприятий, направленных на предотвращение экологически вредной деятельности, аварий, катастроф, стихийных бедствий, также нормированием качества окружающей природной среды, является юридическим средством для определения границ дозволенного поведения в природопользовании.

Нормирование - установление плановой меры пользования ресурсами с учетом ее качества, разработка и утверждение норм на единицу планируемой продукции (в установленной номенклатуре), а также контроль за их выполнением.

Нормирование всех загрязнителей основывается на определении ПДК в различных средах. За основу выбирают самый низкий уровень загрязнения на основе санитарно-гигиенических норм (табл. 1.5, 1.6, 1.7). ПДК загрязнителей в нормативах разных стран могут быть неодинаковыми (незначительно).

Таблица 1.5

Предельно допустимые концентрации вредных веществ в атмосфере населенных пунктов

вещество

ПДК (максимальная) разовая, мг / м 3

ПДК среднесуточная, мг / м я

нитробензол

оксид серы

сероводород

угарный газ

оксиды азота

пыль нетоксичен

Копоть (сажа)

серная кислота

Фтороводорода (пара)

Пары свинца, ртути

хлороформ

уксусная кислота

Таблица 1.6

Предельно допустимые концентрации вредных веществ в воде

вещество

ПДК (максимальная) разовая, мг / л

ПДК среднесуточная, мг / м 3

Кобальт, марганец

Бензол, бор

ГОСТ 4630-88

стронций

Бензин, керосин, цинк, кобальт, железо

Хром, никель, медь, молибден, вольфрам

Таблица 1.7

Предельно допустимые концентрации вредных веществ в почвах (ГОСТ 3034-84, 3210-85, 42-128-4433-87)

вещество

ДК, мг / кг

вещество

ПДК, мг / кг

бензпирен

Бромофос, метилспирал

Сероводород, полихлорпилен

шестивалентный

хлорофос

Бензол, толуол

карбофос

хлорамин

гексахлоран

Бромофос, метилстирал

марганец

Гетерофос

Нормативы ПДК в Украине единые и обязательные для усек предприятий и структур, независимо от форм собственности и подчиненности. При определении ПДК учитывают не только степень влияния на здоровье человека, а и их действие на диких и домашних животных, растения, грибы, микроорганизмы и природные группировки в целом.

Результаты новейших исследований показывают, что нижних безопасных пределов воздействий канцерогенов и ионизирующей радиации не существует. Любые дозы, превышающие обычный природный фон, вредны.

При наличии в воздухе или воде нескольких загрязнителей их суммарная концентрация не должен превышать 1 Это можно примерно вычислить так:

C1 / ГДК1 + С2 / ГДК2 + ... + С / ПДК = 1,

где C1, C2, ... С - фактические концентрации загрязнителей, мг / м8; ГДК1, ГДК2 ... ПДК - ПДК загрязнителей, мг / м3.

Если суммарная концентрация загрязнителей больше 1, то санитарное состояние не отвечает нормативным требованиям. Очень вредная суммарное действие таких загрязнителей, как сернистый газ, диоксид азота, фенол, аэрозоли дезинтеграции, серная и фтористоводородная кислоты.

Для неодинаковых сред ПДК одних и тех же токсикантов различаются. При определении ПДК веществ природных вод их разделяют на ПДК вод хозяйственно-питьевого назначения и ПДК вод рыбного хозяйства (при этом ПДК одинаковых веществ имеют разное значение). В почвах ПДК веществ определяют преимущественно для одного слоя. Поллютантов не имеют вредно влиять на качество продукции, выращенной для потребления, а также на способность почвы самоочищаться, нормально функционировать. В последнее время делают все больше расчетов ПДК для продуктов питания.

Основными средствами защиты человека от воздействия вредных веществ является гигиеническое нормирование их содержания в различных средах, различные методы очистки газовых выбросов (адсорбция, абсорбция, химическое преобразование) и стоков (первичное, вторичное и третичное очистки), а также средства индивидуальной защиты.

ПРЕДЕЛЬНО ДОПУСТИМЫЕ КОНЦЕНТРАЦИИ (ПДК) - гигиенические нормативы, регламентирующие безопасное для человека загрязнение окружающей среды химическими (в т. ч. радиоактивными) веществами. ПДК - необходимые критерии при осуществлении сан. охраны воздуха рабочей зоны, атмосферы населенных мест, воды, почвы и продуктов питания. В СССР впервые ПДК (для хлористого водорода) была установлена и утверждена Наркомтрудом 30 августа 1922 г.

В качестве ПДК в воздухе рабочей зоны допускаются такие концентрации вредных веществ, которые при ежедневной (кроме выходных дней) работе в течение 8 час. (или при другой продолжительности, но не более 41 часа в неделю) в течение всего рабочего стажа не могут вызвать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований как в период работы, так и в отдаленные сроки жизни настоящего и последующих поколений.

ПДК атмосферных загрязнений - максимальные концентрации вредных веществ, отнесенные к определенному времени осреднения (20- 30 мин., 24 часа, 1 мес., 1 год), которые при регламентированной вероятности их появлений не оказывают ни прямого, ни косвенного вредного действия на человека, его потомство и сан. условия жизни.

ПДК вредных веществ в воде водоемов - максимальные концентрации, которые при воздействии на организм человека в течение всей его жизни не оказывают прямого или опосредованного влияния на состояние здоровья настоящего и последующих поколений и не ухудшают гиг. условия водопользования населения.

ПДК экзогенных хим. веществ для почвы устанавливаются для предупреждения опасного для здоровья людей вторичного загрязнения контактирующих с почвой вод, воздуха и растений.

Для пищевых продуктов существуют нормы допустимых остаточных количеств вредных веществ (ДОК). Количество ПДК вредных веществ для воздуха определяется в мг/м3, для воды - в мг/л, для продуктов питания и почвы - в мг/кг. Предусмотрено установление максимально разовых и для высококумулятивных веществ среднесменных концентраций в воздухе рабочей зоны, максимально разовых и среднесуточных концентраций - в атмосферном воздухе населенных мест. В соответствии с ГОСТ 12.1.007 - 76 наряду с ПДК указывается класс опасности веществ (для регламентирования вентиляции, планировочного и аппаратурного оформления технологического процесса), а также агрегатное состояние вещества в реальных условиях контакта с людьми (для обоснования методов контроля). Вещества, способные проникать в организм через неповрежденную кожу, обозначаются специальным символом. Для каждого вещества, регламентируемого в атмосферном воздухе населенных мест, также обосновывается класс опасности. Обоснование ПДК в воде проводится с учетом одного из трех лимитирующих показателей вредности вещества - органолептического, общесанитарного или санитарно-токсикологического.

Примеры действующих нормативов ПДК нек-рых вредных веществ в воздухе рабочей зоны, атмосферном воздухе населенных мест и воде водоемов санитарно-бытового водопользования приведены в таблицах 1-4.

ПДК вредных веществ в воздухе рабочей зоны устанавливаются поэтапно. Первый этап приурочивается к периоду лабораторной разработки новых соединений и заканчивается обоснованием ориентировочного безопасного уровня воздействия. Второй этап относится к периоду полузаводских испытаний и проектированию производства. На этом этапе обосновывается ПДК в хрон, и пожизненном (для изучения канцерогенеза, процессов преждевременного старения и др.) экспериментах на животных. Третий этап начинается после внедрения веществ в производство в сроки, устанавливаемые в зависимости от токсикологической характеристики вещества и гиг. характеристики производства, но не позднее чем через 3-5 лет с момента внедрения, и заключается в уточнении ПДК путем сопоставления условий труда работающих и состояния их здоровья.

Этапность установления ПДК хим. веществ в воде водоемов следующая. На первом этапе устанавливаются пороговые концентрации хим. веществ по органолептическому и общесанитарному признаку вредности, проводятся токсикологические исследования для расчета максимально не действующей концентрации. На втором этапе проводятся подострые опыты на животных с применением экспресс-эксперимен-тальных методов и последующей экстраполяцией полученных результатов на длительные сроки воздействия. На третьем этапе ставятся хрон, эксперименты, а на четвертом - проводятся пожизненные эксперименты с целью изучения канцерогенного действия и героэффекта. В зависимости от класса опасности изучаемого вещества исследования могут быть завершены для веществ 4-го класса опасности на первом этапе, для веществ 3-го класса - на втором этапе, для веществ 2-го класса - на третьем этапе и для веществ 1-го класса - на четвертом этапе.

Предельно допустимые концентрации радиоактивных веществ обозначаются иначе. При внутреннем облучении за счет поступления радионуклидов в организм устанавливают допустимую концентрацию (ДК) - отношение предельно допустимого годового поступления (ПДП), или предела годового поступления (ПГП) радиоактивного вещества, к объему (V) воды или воздуха, с к-рым оно поступает в организм человека в течение года. Для контактирующих с источниками ионизирующего излучения по роду своей профессиональной деятельности объем воздуха принимается равным 2,5-106 л в год; для лиц, которые не работают непосредственно с источниками излучения, но по условиям проживания или размещения рабочих мест могут подвергаться воздействию ионизирующего излучения, объем воздуха равен 7,3-106д в год, а объем воды - 800 л в год.

Предельно допустимое годовое поступление (ПДП) - такое количество радиоактивных веществ, поступающих в организм профессионального работника в течение года, к-рое за 50 лет создает в критическом органе эквивалентную дозу, равную 1 ПДД (см. Предельно допустимая доза излучения). При ежегодном поступлении радиоактивного вещества в организм на уровне ПДП эквивалентная доза за любой год будет равна или меньше 1 ПДД (в зависимости от времени достижения равновесного содержания радиоактивного вещества в организме). Предел годового поступления (ПГП) - количество радиоактивных веществ, поступающих в организм ограниченных групп населения в течение года, к-рое за 70 лет создает в критическом органе эквивалентную дозу, равную 0,1 ПДД.

Допустимые концентрации радионуклидов благородных газов (аргона, криптона, ксенона) и короткоживущих радионуклидов углерода, азота и кислорода рассчитаны исходя из допустимой мощности дозы их внешнего бета- и гамма-излучения. Для большинства радионуклидов численные значения ПДП, ПГП и ДК рассчитаны исходя из равновесного их накопления в критическом органе, равного допустимому содержанию. При планировании мероприятий по защите и для оперативного контроля за радиационной обстановкой с целью предотвращения превышения дозового предела должны устанавливаться контрольные уровни поступления в организм радионуклидов. До установления контрольных уровней они принимаются равными допустимым, установленным нормами радиационной безопасности (НРБ-76). Допустимые концентрации радионуклидов определяются в кюри/л (для воздуха и воды) и в кюри/кг (для продуктов питания).

Установление ПДК базируется на принципах опережения разработки нормативов внедрению новых хим. соединений в народное хозяйство, на приоритете мед. показаний перед технической достижимостью на момент исследования веществ и перед другими технико-экономическими критериями, на принципе по-роговости всех типов действия хим. соединений (в т. ч. мутагенного и канцерогенного) на целостный организм с учетом необходимости комплексного подхода к установлению порогов вредного действия. ПДК утверждаются М3 СССР, а контроль за их соблюдением возложен на органы и учреждения санитарно-эпидемиологической службы.

Ориентировочные безопасные уровни воздействия (ОБУВ) - временные ориентировочные гиг. нормативы, ограничивающие содержание вредных веществ в объектах окружающей среды (воздухе рабочей зоны, атмосферном воздухе населенных мест, воде и др.) с целью обеспечения безопасных условий труда и быта. Это понятие введено вместо ранее применявшегося «расчетные ПДК» во избежание терминологической путаницы. ОБУВ применяются на стадии исследовательской и опытно-промышленной разработки, на стадии испытаний новых веществ и технологических процессов. Они обосновываются расчетным путем по параметрам токсикометрии, полученным в результате краткосрочных экспериментов на лабораторных животных при однократном и повторном (до 1 мес.) воздействии, и путем интерполяций и экстраполяций в рядах соединений, близких по физическим, химическим свойствам и биологическому действию. Большинство методов обоснования ОБУВ исключает определение порога хрон, действия веществ как наиболее трудоемкой и продолжительной части исследований. Величины ОБУВ утверждаются М3 СССР на ограниченный срок (для воздуха рабочей зоны опытных и полупромышленных установок - на 2 года, для атмосферного воздуха населенных мест - на 3 года), после чего они в зависимости от перспективы применения вещества и имеющейся информации о его токсических свойствах должны быть заменены на ПДК или переут-верждены на новый срок либо отменены.

В соответствии с требованиями ГОСТ 12.1.007 - 76 для ОБУВ должны быть разработаны методы контроля в воздухе рабочей зоны. ОБУВ в атмосферном воздухе населенных мест могут быть использованы для целей предупредительного санитарного надзора (см.) при отсутствии методов хим. контроля.

Понятие «предельно допустимые концентрации», принятое в СССР, отличается от соответствующих зарубежных регламентаций. Так, в США распространено понятие «величины порогового предела» - Threshold Limit Values (TLV), что означает среднюю концентрацию вредных веществ за смену. Величины ПДК и TLV для отдельных веществ иногда различаются в десятки раз в связи с различиями принципов и методов гиг. нормирования. В нашей стране ПДК устанавливаются на основании данных медико-биологических исследований, а в США при обосновании TLV этот принцип не является обязательным.

Таблицы

Таблица 1. ПРЕДЕЛЬНО ДОПУСТИМЫЕ КОНЦЕНТРАЦИИ НЕКОТОРЫХ ВРЕДНЫХ ВЕЩЕСТВ В ВОЗДУХЕ РАБОЧЕЙ ЗОНЫ 1

Приводятся как пример. Условные обозначения: п - пары и (или) газы; а - аэрозоли; п+а - смесь паров и аэрозоля; * - вещество опасно при поступлении через кожу; ** - среднесменная ПДК.

Наименование вещества

ПДК, мг/м3

Преимущественное агрегатное состояние в воздухе в условиях производства

опасности

Азота окислы (в пересчете на N02)

Акролеин

Аллил цианистый*

Алмаз металлизированный

Альдегид кротоновый

Альдегид масляный

n-Аминоанизол (п-анизи-дин)*

а-Аминоантрахинон

м-Аминобензотрифторид

Аминопласты (пресс-порошки)

Ангидрид борный

Ангидрид масляный

Ангидрид малеиновый

Ангидрид метакриловой кислоты

Ангидрид мышьяковый

Ангидрид селенистый

Ангидрид сернистый

Ангидрид серный

Ангидрид хромовый

Ацетальдегид

Ацетонитрил

Ацетонциангидрин*

Ацетофенон*

Бензальхлорид

Бензил цианистый*

Бензоил хлористый

Бензотрихлорид

п-Бензохинон

Бисхлорметилбензол

Бисхлорметилнафталин

Бор фтористый

Бромбензол

Бромофор

Бутиловый эфир акриловой кислоты

1,4-Бутиндиол

Винилацетат

Винилбутиловый эфир

Винилиденхлорид(1,1 ди-хлорэтилен)

2-В инилпиридин*

Вольфрам

Гексаметилендиамин

Гексаметилендиизоциа-

Гексафторпропилен

Гексахлорацетон

Гексахлорбензол*

Гексахлорциклопентади-

Германий

Гидразин-гидрат*

р-Гидрооксиэтилмеркап-

Гидроперекись изопропил-бензола

1,2-Дибромпропан

Дивинил (1,3 бутадиен)

Диизопропиламин

Дикобальтоктакарбонил

Дикумилметан*

U , О-Диметил-О-нитрофе-нилтиофосфат (метафос)*

0,0-Диметил-(1 -окси-2 , 2 , 2-трихлорэтил) фосфонат (хлорофос)*

Диметиламин

Д иметиланил ин *

Диметилбензиламин

4 , 4-Диметилдиоксан-1, 4

4 , 4-Диметилдиоксан-1, 3

Диметилсульфид*

Диметилформамид

Диметилхлортиофосфат

Диметилэтаноламин

Динитрил адипиновой кислоты

Динитрил перфтоглютаро-вой кислоты

Динитробензол*

Динитро-о-крезол*

Динитророданбензол*

Динитротолуол*

Динитрофенол*

Дитолилметан

Дифенила окись хлорированная*

Дифенилолпропан

Дифенилы хлорированные*

3,4-Дихлоранилин*

1, З-Дихлорбутен-2

Дихлоргидрин

1,2-Дихлоризобутан

1,3-Дихлоризобутилен

3,З-Дихлорметилоксаци-клобутан

3,4-Дихлорнитробензол*

1,З-Дихлорпропилен

3,4-Д ихлорфенилизоциа-нат

Дихлорэтан*

Дициклопентадиен*

Диэтиламин

|3-Диэтиламиноэтилмер-

Диэтилбензол

Додецилмеркаптан (третичный)

Изобутилен хлористый

Изопропиламинодифенил-

Изопропилнитрат

Изопропилнитрит*

Изопропилхлоркарбонат

Кадмия стеарат по (Cd)

Капролактам

Кислота акриловая

Кислота борная

Кислота валериановая

Кислота капроновая

Кислота метакриловая

Кислота пентафторпропио-новая

Кислота серная

Кислота терефталевая

Кислота трифторуксусная

Кислота уксусная

Кислота хлорпеларгоно-вая

Кобальт металлический

Кобальта окись

Ксантогенат калия бутиловый

Ксилидин*

Метил бромистый

Метил хлористый

2-Метил-5-винилпиридин*

Метилдигидропиран*

Метилизотиоцианат*

1 -Метилнафталин

Метилпирролидон

Метилпропилкетон

Метилен бромистый

Талия бромид

Талия йодид

Тетрагидрофуран

Тетранитрометан

Тетрахлоргексатриен*

Тетрахлорнонан

Тетрахлорундекан

Тетрахлорэтан*

Тетрахлорэтилен

Тетраэтилсвинец*

Тетраэтоксисилан

Титан четыреххловистый (по НС1)

Толуидин*

Толуилендиамин*

Толуилендиизоцианат

Третбутилперацетат

Третбутилпербензоат

Триксиленилфосфат*

Триметиламин

Триметилолпропан (этри-ол)

Тринитротолуол*

Трифторпропиламин

Трифторэтиламин

1,1,3-Трихлорацетон Трихлорбензол

Трихлорнафталин*

Трихлорпропан

Трихлорпропилен

Трихлорфенолят меди

Триэтиламин

Триэтоксисилан

Уайт-спирит (в пересчете

Углеводороды алифатические предельные Ct-С10 (в пересчете на С)

Углерод четыреххлористый*

Углерода окись

n-Фенетидин солянокислый

^-Феноксифенол*

Формальдегид

Формамид

Фосфористый водород

Фтористый водород

Фурфурол

2-Хлор-4,6-бис-этиламино-симм-триазин (симазин)

Хлора двуокись

Хлорангидрид акриловой кислоты

Хлорангидрид метакрило-вой кислоты

Хлорангидрид трихлоруксусной кислоты*

л*-Х лор анилин*

гг-Хлоранилин*

Хлорбензол*

Хлористый водород

Хлористый 5-зтокеифенил-1,2-тиазтионий

Хлоропрен

л-Хлорфенилизоцианат

Метилен хлористый

2-Метилфуран (сильван)

Монобутиламин

Моновинилацетилен

Моноизопропиламин

Монометиламин

Монохлорстирол

Мышьяковистый водород

Натрий роданистый (технический)

Нафталин

Нафталины хлорированные (высшие)*

а-Нафтохинон

Нитрил акриловой кислоты*

п-Нитроанизол*

п-Нитроанилин*

о-Нитроанилин*

ж-Нитробензотрифторид

Нитробутан

Нитроксилол*

Нитрометан

Нитросоединения бензола*

Нитроформ

Нитрофоска бесхлорная Нитрофоска сульфатная

Нитрофоска фосфорная

Нитрохлорбензол

Нитроциклогексан

п-0 ксидифениламин

Октафтордихлорциклогек-

Иентахлорацетон

Пентахлорнитробензол

Пентахлорфенол*

Пентахлорфенолят натрия*

Перфторизобутилен

Перхлорметилмеркаптан

Пиколины (семь изомеров)

Поливинилхлорид

Полихлорпинен*

н-Пропиламин

Пропилпропионат

Пропилена окись*

Растворитель 646 (по толуолу)

Ртуть двухлористая (сулема)

Ртуть металлическая

Свинец и его неорганические соединения

Селен аморфный

Сероводород*

Сероуглерод

Синильной кислоты соли (в пересчете на HCN)*

Спирт амиловый

Спирт бутиловый

Спирт н-гексиловый

Спирт изооктиловый (2-этилгексанол)

Спирт н-нониловый

Спирт н-октиловый

Спирт пропаргиловый

Спирт пропиловый

Спирт тетрафторпропило-вый

Спирт трифторэтиловый

Спирт этиловый

Стрептомицин

Сульфат аммония

п-Хлорфенол*

2-Хлорэтансульфахлорид*

Хрома трихлорид (гексагидрид) в пересчете на Сг

Цианамид свободный*

Цианистый водород*

Циклогексан

Циклогексанон

Циклогексиламин

Циклогексиламина карбонат

Циклогексиламина хромат*

Циклопентадиен

Циклопентадиенилтрикар-бонил марганца

Цинка окись

Щелочи едкие (растворы в пересчете на NaOH)

Экстралин

Эпихлоргидрин

8-Этил-К-гексаметилентио-карбамат (ялан)

Этилацетат

2-Этилгексеналь

Этилена окись

Этилендиамин

Этилендиацетат

Этиленимин*

Этиленмеркаптан

Этиленсульфид *

Этилмеркурхлорид (по Hg)*

Этилмеркурфосфат (по Hfr)*

Этилтолуол

Таблица 2. ПРЕДЕЛЬНО ДОПУСТИМЫЕ КОНЦЕНТРАЦИИ НЕКОТОРЫХ АЭРОЗОЛЕЙ ПРЕИМУЩЕСТВЕННО ФИБРОГЕННОГО ДЕЙСТВИЯ 1

Наименование вещества

ПДК, мг/м3

Класс опасности

Алюминий и его сплавы (в пересчете на А1)

Алюминия окись в виде аэрозоля дезинтеграции (глинозем, электрокорунд, монокорунд)

Алюминия окись (в т. ч. с примесью двуокиси кремния) в виде аэрозоля конденсации

Аэросил, модифицированный бутиловым спиртом (бутосил)

Аэросил, модифицированный диметилдихлорсиланом

Железа окись с примесью окислов марганца до 3%

Железа окись с примесью фтористых или марганцевых со

единений (от 3 до 6%)

Железный и никелевый агломераты

кремния двуокись аморфная в виде аэрозоля конденсации при содержании ее в пыли св. 70% (возгоны электротермического производства кремния и кремнистых ферросплавов, аэросил-175, аэросил-300 и др.)

кремния двуокись аморфная в виде аэрозоля конденсации при содержании ее в пыли от 10 до 70%

кремния двуокись аморфная в смеси с окислами марганца в виде аэрозоля конденсации с содержанием каждого из них более 10%

кремния двуокись кристаллическая (кварц, кристоба-лит, тридимит) при содержании ее в пыли св. 7 0% (кварцит, динас и др.)

кремния двуокись кристаллическая при содержании ее в пыли от 10 до 7 0% (гранит, шамот, слюда-сырец, углеродная пыль и др.)

кремния двуокись кристаллическая при содержании ее в пыли от 2 до 10% (горючие кукерситные сланцы, медно-сульфидные руды, углепородная и угольная пыль, глина и др.)

Кремнемедистый сплав

Кремния карбид (карборунд)

Магнезит

Силикаты и силикатосодержащие пыли:

асбест природный и искусственный, а также смешанные асбестопородные пыли при содержании в них асбеста более 1 0 %

асбестоцемент

асбестобакелит (волокнит), асбесторезина

тальк, слюда-флаго лит и мусковит

стеклянное и минеральное волокно

цемент, оливин, апатит, форстерит, глина

Тантал и его окислы

Титан и его двуокись

Углерода пыли:

алмазы природные и искусственные

каменный уголь с содержанием двуокиси кремния менее 2%

кокс нефтяной, пековой, сланцевый, электродный

Фосфорит

Таблица 3. ПРЕДЕЛЬНО ДОПУСТИМЫЕ КОНЦЕНТРАЦИИ НЕКОТОРЫХ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРНОМ ВОЗДУХЕ НАСЕЛЕННЫХ МЕСТ 1

Наименование вещества

ЛДК, мг/м3

опасности

максимальная разовая

суточная

Азота двуокись

Акролеин

н-Амил ацетат

Амилены (смесь изомеров)

Ангидрид малеиновый (пары, аэрозоль)

Ангидрид сернистый

Ангидрид уксусный

Ангидрид фосфорный

Ангидрид фталевый (пары,

аэрозоль)

Ацетальдегид

Ацетофенон

Бензин (нефтялой, малосернистый, в пересчете на С)

Бензин (сланцевый, в пересчете на С)

Бутилацетат

Бутифос (S,S,S-Tpn6yTiMTpH- тиофосфат)

Ванадия пятиокиеь

Винилацетат

Гексаметил ендиамин

Диметилдисульфид

0,0-Диметил-8-(М-метилкарба-мидометил) дитиофосфат (фос-фамид, рогор)

Диметилсульфид

Диметилформамид

Динил (смесь 25% дифенила и 7 5% дифенилоксида)

2,3-Дихлор-1,4-нафтохинон <дихлон)

Дихлорэтан

Диэтил амин

Изопропилбензол (кумол)

Капролактам (пары, аэрозоль)

Кислота азотная по молекуле H N О s

Кислота валериановая

Кислота борная

Кислота капроновая

Кислота масляная

Кислота серная (по молекуле H2S04)

Кислота уксусная

Марганец и его соединения <в пересчете на Мп02)

Метилацетат

Метилен хлористый

Метилмеркаптан

Метиловый эфир акриловой кис л оты (метил а к рил ат)

Метиловый эфир метакрило-вой кислоты (метилметакрилат)

а-Метилстирол

Монометил анилин

Мышьяк (неорганические соединения, кроме H3As, в пересчете на As)

а-Нафтохинон

Нитробензол

Пропилен

динас 85 - 90

цемент 2 0

доломит 8

Ртуть металлическая

Свинец и его соединения, кроме тетраэтилсвинца (в пересчете на РЬ)

Свинец сернистый

Сероводород

Сероуглерод

Спирт метиловый

Спирт этиловый

Тиофен (тиофуран)

Толуилендиизоцианат

Трихлорэтилен

Углерод четырех хлористый

Улерода окись

Формальдегид

Фтористые соединения (в пересчете на F):

газообразные (HF, SiF4)

хорошо растворимые неорганические фториды (NaF, Na2SiF6)

плохо растворимые неорганические фториды (A1F3, CaF2, Na3AlF6)

ФУРФУРОЛ

Хлорбензол

Хром шестивалентный (в пересчете на СгОз)

Циклогексанол

Циклогексанон

Эпихлоргидрин

Этилацетат

Этилена окись

Примечания. 1. При присутствии в атмосферном воздухе одновременно нескольких веществ (напр., окиси углерода и сернистого ангидрида; окиси углерода, двуокиси азота и сернистого ангидрида; сероводорода и сероуглерода; фталевого, малеинового ангидридов и а-нафтохинона) предельно допустимые концентрации сохраняются для каждого вещества в отдельности.

2. При одновременном присутствии в атмосферном воздухе нескольких веществ, обладающих суммацией действия, сумма их концентраций при расчете по нижеприведенной формуле не должна превышать 1.

С1/ПДК1 + С2/ПДК2 + … + Сn /ПДКn <= 1

где: C1, С2,......,Сn - фактические концентрации веществ в атмосферном воздухе; ПДК1 ПДК2,......,ПДКn - предельно допустимые концентрации тех же веществ.

Эффектом суммации обладают: сернистый ангидрид, окись углерода, двуокись азота и фенол; ацетон, акролеин, фталевый ангидрид; ацетон, ацетофенон, ацетон и фенол; ацетон, фурфурол, формальдегид и фенол; ацетальдегид и винилацетат; аэрозоли пятиокиси ванадия и окислов марганца; аэрозоли пятиокиси ванадия и сернистый ангидрид; аэрозоли пятиокиси ванадия и трехокиси хрома; бензол и ацетофенон; валериановая, капроновая и масляная кислоты; гексахлоран и фазолон; 2,3-дихлор-1,4-нафтохинон и

1,4-нафтохинон; изопропилбензол и гидроперекись изопропилбензола; озон, двуокись азота и формальдегид; окись углерода, двуокись азота, формальдегид, гексан; сернистый ангидрид и аэрозоль серной кислоты; сернистый ангидрид и сероводород; сернистый ангидрид и двуокись азота; сернистый ангидрид, окись углерода, фенол и пыль конверторного производства; сернистый ангидрид и фенол; сернистый ангидрид и фтористый водород; серный и сернистый ангидрид, аммиак, окислы азота; сероводород и динил; сильные минеральные кислоты (серная, соляная и азотная); окись углерода и пыль цементного производства; уксусная кислота и уксусный ангидрид; фенол и ацетофенон; фурфурол, метиловый и этиловый спирты; циклогексан и бензол; этилен, пропилен, бутилен и амилен.

3. При последовательном применении гексахлорана, фазолона и бутифоса сохраняются ПДК каждого вещества в отдельности.

4. Эффектом потенцирования обладают фтористый водород и фторсоли с коэффициентом 0,8.

Таблица 4. ПРЕДЕЛЬНО ДОПУСТИМЫЕ КОНЦЕНТРАЦИИ НЕКОТОРЫХ ВРЕДНЫХ ВЕЩЕСТВ В ВОДЕ ВОДОЕМОВ САНИТАРНО-БЫТОВОГО ВОДОПОЛЬЗОВАНИЯ 1

Наименование вещества

Лимитирующий показатель вредности

Общесанитарный

Анизол (метилфениловый эфир)

Санитарно-токсикологический

Санитарно-токсикологический

Общесанитарный

Санитарно-токсикологи

Органолептический

Санитарно-токсикологи

Бутилбензол

Органолептический

Органолептический

Санитарно-токсикологи

Гексаметилендиамин

Санитарно-токсикологи-

Гексаметилентетрамин

(уротропин)

Санитарно-токсикологи

Гексахлорбензол*

Санитарно-токсикологи

Гексахлорбутан

Органолептический

Гексахлорциклогексан

(гексахлоран)

Органолептический

Гексахлорциклопентадиен

Органолептический

Гексахлорэтан

Органолептический

Гидрохинон

Органолептический

Диизопропиламин

Санитарно-токсикологи

0,0-Диметил-8-1, 2-дикар-боэтоксиэтилдитиофосфат (карбофос)

Органолептический

4,4-Диметилдиоксан-1,3

Санитарно-токсикологи

Диметилтерефталат

Санитарно-токсикологи

Диметилфенилкарбинол

Санитарно-токсикологи

Диметилформамид

Общесанитарный

Динитробензол

Органолептический

Динитронафталин

Органолептический

Динитророданбензол

Общесанитарный

Дитиофосфат крезиловый

Органолептический

Дихлорбензол

Органолептический

1,3-Дихлорбутен-2

Органолептический

Дихлоргидрин

Органолептический

Дихлорметан

Органолептический

Дихлорциклогексан

Органолептический

Дихлорэтан

Органолептический

Диэтиловый эфир малеино-вой кислоты

Санитарно-токсикологи

Диэтилртуть

Санитарно-токсикологи

Органолептический

Изобутилен

Органолептический

Органолептический

Изопропиламин (моноизо-пропиламин)

Санитарно-токсикологи

Санитарно-токсикологи

Калий диизопропилдитио-фосфорный

Органолептический

Калий диэтилдитиофос-форный

Органолептический

Капролактам

Общесанитарный

Кислота бензойная

Общесанитарный

Кислота диметилдитиофос-форная

Органолептический

Кислота диэтилдитиофос-форная

Органолептический

Кислота хлорпеларгоновая

Органолептический

Кислота хлорундекановая

Органолептический

Кислота хлорэнантовая

Органолептический

Санитарно-токсикологи

Органолептический

Органолептический

L-Метилстирол

Органолептический

Метилэтилкетон

Органолептический

Молибден

Санитарно-токсикологи

Монометиламин

Санитарно-токсикологи

Моноэтиламин

Органолептический

Нефть многосернистая

Органолептический

Санитарно-токсикологи

Нитрат (по азоту)

Санитарно-токсикологи-

Нитроформ

Органолептический

Нитрохлорбензол (о-, м-, п-изомер)

Санитарно-токсикологи

Нитроциклогексан

Санитарно-токсикологи

Пентахлорбутан

Органолептический

Пентахлорфенол

Органолептический

Пентахлорфенолят натрия

Органолептический

Полихлорпинен

Санитарно-токсикологи-

Пропилбензол

Органолептический

Пропилен

Органолептический

Роданиды

Санитарно-токсикологи

Санитарно-токсикологи

Органолептический

Санитарно-токсикологи

Органолептический

Сероуглерод

Спирт изобутиловый

Санитарно-токсикологи

Спирт н-нониловый

Санитарно-токсикологи-

Органолептический

Санитарно-токсикологи

Тетранитрометан

Органолептический

Тетрахлорнонан

Органолептический

Тетрахлорпропан

Органолептический

Тетрахлорэтан

Органолептический

Общесанитарный

Органолептический

Трифторхлорпропан

Санитарно-токсикологи

Трихлорэтилен

Органолептический

Углерод четыреххлористый

Санитарно-токсикологи

Ферроцианиды

Санитарно-токсикологи

Формальдегид

Санитарно-токсикологи

Санитарно-токсикологи

Санитарно-токсикологи-

Хлорбензол

Санитарно-токсикологи

Циклогексан

Санитарно-токсикологи

Санитарно-токсикол оги-ческий

Этиленгликоль

Санитарно-токсикол от

1 Приводятся как пример.

Условные обозначения: *- в пределах, допустимых расчетом на содержание органических веществ, по показателям БПК и растворенного кислорода; **- опасно при поступлении через кожу.

Библиография: Методы изучения биологического действия загрязнителей (обзор методов, используемых в СССР), Копенгаген, ВОЗ, 1975, библиогр.; Москалев Ю. И. Некоторые итоги Международной комиссии по радиологической защите (МКРЗ) за 45 лет (с 1928 по 1973), в кн.: От радиобиол. эксперимента к человеку, под ред. Ю. И. Москалева, с. 253, М., 1976; Нормы радиационной безопасности (НРБ-76), М., 1978; Проблема по-роговостм в токсикологии, под ред. Г. Н. Красовского, М., 1979; Радиационная защита, Рекомендации МКРЗ, Публикация-26, пер. с англ., М., 1978; С а-н о ц к и й И. В. Предупреждение вредных химических воздействий на человека- комплексная задача медицины, экологии, химии и техники, Журн. Всесоюз, хим. об-ва им. Д. И. Менделеева, т. 19, № 2, с. 125, 1974, библиогр.; Ш и ц к о- в а А. П. и др. Гигиеническое нормирование в условиях научно-технического прогресса, в кн.: Всесторонний анализ окружающей природной среды, под ред. Ю. А. Израэля, с. 105, Л., 1975, библиогр.

И. В. Саноцкий, К. К. Сидоров, Ю. И. Москалев.