Литосферные плиты и их движение. Тектонические плиты

Литосферные плиты Земли представляют собой огромные глыбы. Их фундамент образован сильно смятыми в складки гранитными метаморфизированными магматическими породами. Названия литосферных плит будут приведены в статье ниже. Сверху они прикрыты трех-четырехкилометровым "чехлом". Он сформирован из осадочных пород. Платформа имеет рельеф, состоящий из отдельных горных хребтов и обширных равнин. Далее будет рассмотрена теория движения литосферных плит.

Появление гипотезы

Теория движения литосферных плит появилась в начале двадцатого столетия. Впоследствии ей суждено было сыграть основную роль в исследованиях планеты. Ученый Тейлор, а после него и Вегенер, выдвинул гипотезу о том, что с течением времени происходит дрейф литосферных плит в горизонтальном направлении. Однако в тридцатые годы 20-го века утвердилось другое мнение. Согласно ему, перемещение литосферных плит осуществлялось вертикально. В основе этого явления лежал процесс дифференциации мантийного вещества планеты. Оно стало называться фиксизмом. Такое наименование было обусловлено тем, что признавалось постоянно фиксированное положение участков коры относительно мантии. Но в 1960-м году после открытия глобальной системы срединно-океанических хребтов, которые опоясывают всю планету и выходят в некоторых районах на сушу, произошел возврат к гипотезе начала 20-го столетия. Однако теория обрела новую форму. Тектоника глыб стала ведущей гипотезой в науках, изучающих структуру планеты.

Основные положения

Было определено, что существуют крупные литосферные плиты. Их количество ограниченно. Также существуют литосферные плиты Земли меньшего размера. Границы между ними проводят по сгущению в очагах землетрясений.

Названия литосферных плит соответствуют расположенным над ними материковым и океаническим областям. Глыб, имеющих огромную площадь, всего семь. Наибольшие литосферные плиты - это Южно- и Северо-Американские, Евро-Азиатская, Африканская, Антарктическая, Тихоокеанская и Индо-Австралийская.

Глыбы, плывущие по астеносфере, отличаются монолитностью и жесткостью. Приведенные выше участки - это основные литосферные плиты. В соответствии с начальными представлениями считалось, что материки прокладывают себе дорогу через океаническое дно. При этом движение литосферных плит осуществлялось под воздействием невидимой силы. В результате проведенных исследований было выявлено, что глыбы плывут пассивно по материалу мантии. Стоит отметить, что их направление сначала вертикально. Мантийный материал поднимается под гребнем хребта вверх. Затем происходит распространение в обе стороны. Соответственно, наблюдается расхождение литосферных плит. Данная модель представляет океаническое дно в качестве гигантской Она выходит на поверхность в рифтовых областях срединно-океанических хребтов. Затем скрывается в глубоководных желобах.

Расхождение литосферных плит провоцирует расширение океанических лож. Однако объем планеты, несмотря на это, остается постоянным. Дело в том, что рождение новой коры компенсируется ее поглощением в участках субдукции (поддвига) в глубоководных желобах.

Почему происходит движение литосферных плит?

Причина состоит в тепловой конвекции мантийного материала планеты. Литосфера подвергается растяжению и испытывает подъем, что происходит над восходящими ветвями от конвективных течений. Это провоцирует движение литосферных плит в стороны. По мере удаления от срединно-океанических рифтов происходит уплотнение платформы. Она тяжелеет, ее поверхность опускается вниз. Этим объясняется увеличение океанической глубины. В итоге платформа погружается в глубоководные желоба. При затухании от разогретой мантии она охлаждается и опускается с формированием бассейнов, которые заполняются осадками.

Зоны столкновения литосферных плит - это области, где кора и платформа испытывают сжатие. В связи с этим мощность первой повышается. В результате начинается восходящее движение литосферных плит. Оно приводит к формированию гор.

Исследования

Изучение сегодня осуществляется с применением геодезических методов. Они позволяют сделать вывод о непрерывности и повсеместности процессов. Выявляются также зоны столкновения литосферных плит. Скорость подъема может составлять до десятка миллиметров.

Горизонтально крупные литосферные плиты плывут несколько быстрее. В этом случае скорость может составить до десятка сантиметров в течение года. Так, к примеру, Санкт-Петербург поднялся уже на метр за весь период своего существования. Скандинавский полуостров - на 250 м за 25 000 лет. Мантийный материал движется сравнительно медленно. Однако в результате происходят землетрясения, и прочие явления. Это позволяет сделать вывод о большой мощности перемещения материала.

Используя тектоническую позицию плит, исследователи объясняют множество геологических явлений. Вместе с этим в ходе изучения выяснилась намного большая, нежели это представлялось в самом начале появления гипотезы, сложность процессов, происходящих с платформой.

Тектоника плит не смогла объяснить изменения интенсивности деформаций и движения, наличие глобальной устойчивой сети из глубоких разломов и некоторые другие явления. Остается также открытым вопрос об историческом начале действия. Прямые признаки, указывающие на плитно-тектонические процессы, известны с периода позднего протерозоя. Однако ряд исследователей признает их проявление с архея или раннего протерозоя.

Расширение возможностей для исследования

Появление сейсмотомографии обусловило переход этой науки на качественно новый уровень. В середине восьмидесятых годов прошлого века глубинная геодинамика стала самым перспективным и молодым направлением из всех существовавших наук о Земле. Однако решение новых задач осуществлялось с использованием не только сейсмотомографии. На помощь пришли и прочие науки. К ним, в частности, относят экспериментальную минералогию.

Благодаря наличию нового оборудования появилась возможность изучать поведение веществ при температурах и давлениях, соответствующих максимальным на глубинах мантии. Также в исследованиях использовались методы изотопной геохимии. Эта наука изучает, в частности, изотопный баланс редких элементов, а также благородных газов в различных земных оболочках. При этом показатели сравниваются с метеоритными данными. Применяются методы геомагнетизма, с помощью которых ученые пытаются раскрыть причины и механизм инверсий в магнитном поле.

Современная картина

Гипотеза тектоники платформы продолжает удовлетворительно объяснять процесс развития коры в течение хотя бы последних трех миллиардов лет. При этом имеются спутниковые измерения, в соответствии с которыми подтвержден факт того, что основные литосферные плиты Земли не стоят на месте. В результате вырисовывается определенная картина.

В поперечном сечении планеты присутствует три самых активных слоя. Мощность каждого из них составляет несколько сотен километров. Предполагается, что исполнение главной роли в глобальной геодинамике возложено именно на них. В 1972 году Морган обосновал выдвинутую в 1963-м Вилсоном гипотезу о восходящих мантийных струях. Эта теория объяснила явление о внутриплитном магнетизме. Возникшая в результате плюм-тектоника становится с течением времени все более популярной.

Геодинамика

С ее помощью рассматривается взаимодействие достаточно сложных процессов, которые происходят в мантии и коре. В соответствии с концепцией, изложенной Артюшковым в его труде "Геодинамика", в качестве основного источника энергии выступает гравитационная дифференциация вещества. Этот процесс отмечается в нижней мантии.

После того как от породы отделяются тяжелые компоненты (железо и прочее), остается более легкая масса твердых веществ. Она опускается в ядро. Расположение более легкого слоя под тяжелым неустойчиво. В связи с этим накапливающийся материал собирается периодически в достаточно крупные блоки, которые всплывают в верхние слои. Размер подобных образований составляет около ста километров. Этот материал явился основой для формирования верхней

Нижний слой, вероятно, представляет собой недифференцированное первичное вещество. В ходе эволюции планеты за счет нижней мантии происходит рост верхней и увеличение ядра. Более вероятно, что блоки легкого материала поднимаются в нижней мантии вдоль каналов. В них температура массы достаточно высока. Вязкость при этом существенно снижена. Повышению температуры способствует выделение большого объема потенциальной энергии в процессе подъема вещества в область силы тяжести примерно на расстояние в 2000 км. По ходу движения по такому каналу происходит сильный нагрев легких масс. В связи с этим в мантию вещество поступает, обладая достаточно высокой температурой и значительно меньшим весом в сравнении с окружающими элементами.

За счет пониженной плотности легкий материал всплывает в верхние слои до глубины в 100-200 и менее километров. С понижением давления падает температура плавления компонентов вещества. После первичной дифференциации на уровне "ядро-мантия" происходит вторичная. На небольших глубинах легкое вещество частично подвергается плавлению. При дифференциации выделяются более плотные вещества. Они погружаются в нижние слои верхней мантии. Выделяющиеся более легкие компоненты, соответственно, поднимаются вверх.

Комплекс движений веществ в мантии, связанных с перераспределением масс, обладающих разной плотностью в результате дифференциации, называют химической конвекцией. Подъем легких масс происходит с периодичностью примерно в 200 млн лет. При этом внедрение в верхнюю мантию отмечается не повсеместно. В нижнем слое каналы располагаются на достаточно большом расстоянии друг от друга (до нескольких тысяч километров).

Подъем глыб

Как было выше сказано, в тех зонах, где происходит внедрение крупных масс легкого нагретого материала в астеносферу, происходит частичное его плавление и дифференциация. В последнем случае отмечается выделение компонентов и последующее их всплытие. Они достаточно быстро проходят сквозь астеносферу. При достижении литосферы их скорость снижается. В некоторых областях вещество формирует скопления аномальной мантии. Они залегают, как правило, в верхних слоях планеты.

Аномальная мантия

Ее состав приблизительно соответствует нормальному мантийному веществу. Отличием аномального скопления является более высокая температура (до 1300-1500 градусов) и сниженная скорость упругих продольных волн.

Поступление вещества под литосферу провоцирует изостатическое поднятие. В связи с повышенной температурой аномальное скопление обладает более низкой плотностью, чем нормальная мантия. Кроме того, отмечается небольшая вязкость состава.

В процессе поступления к литосфере аномальная мантия довольно быстро распределяется вдоль подошвы. При этом она вытесняет более плотное и менее нагретое вещество астеносферы. По ходу движения аномальное скопление заполняет те участки, где подошва платформы находится в приподнятом состоянии (ловушки), а глубоко погруженные области она обтекает. В итоге в первом случае отмечается изостатическое поднятие. Над погруженными же областями кора остается стабильной.

Ловушки

Процесс охлаждения мантийного верхнего слоя и коры до глубины примерно ста километров происходит медленно. В целом он занимает несколько сотен миллионов лет. В связи с этим неоднородности в мощности литосферы, объясняемые горизонтальными температурными различиями, обладают достаточно большой инерционностью. В том случае, если ловушка располагается неподалеку от восходящего потока аномального скопления из глубины, большое количество вещества захватывается сильно нагретым. В итоге формируется достаточно крупный горный элемент. В соответствии с данной схемой происходят высокие поднятия на участке эпиплатформенного орогенеза в

Описание процессов

В ловушке аномальный слой в ходе охлаждения подвергается сжатию на 1-2 километра. Кора, расположенная сверху, погружается. В сформировавшемся прогибе начинают скапливаться осадки. Их тяжесть способствует еще большему погружению литосферы. В итоге глубина бассейна может составить от 5 до 8 км. Вместе с этим при уплотнении мантии в нижнем участке базальтового слоя в коре может отмечаться фазовое превращение породы в эклогит и гранатовый гранулит. За счет выходящего из аномального вещества теплового потока происходит прогревание вышележащей мантии и понижение ее вязкости. В связи с этим наблюдается постепенное вытеснение нормального скопления.

Горизонтальные смещения

При образовании поднятий в процессе поступления аномальной мантии к коре на континентах и океанах происходит увеличение потенциальной энергии, запасенной в верхних слоях планеты. Для сброса излишков вещества стремятся разойтись в стороны. В итоге формируются добавочные напряжения. С ними связаны разные типы движения плит и коры.

Разрастание океанического дна и плавание материков являются следствием одновременного расширения хребтов и погружения платформы в мантию. Под первыми располагаются крупные массы из сильно нагретого аномального вещества. В осевой части этих хребтов последнее находится непосредственно под корой. Литосфера здесь обладает значительно меньшей мощностью. Аномальная мантия при этом растекается в участке повышенного давления - в обе стороны из-под хребта. Вместе с этим она достаточно легко разрывает кору океана. Расщелина наполняется базальтовой магмой. Она, в свою очередь, выплавляется из аномальной мантии. В процессе застывания магмы формируется новая Так происходит разрастание дна.

Особенности процесса

Под срединными хребтами аномальная мантия обладает сниженной вязкостью вследствие повышенной температуры. Вещество способно достаточно быстро растекаться. В связи с этим разрастание дна происходит с повышенной скоростью. Относительно низкой вязкостью также обладает океаническая астеносфера.

Основные литосферные плиты Земли плывут от хребтов к местам погружения. Если эти участки находятся в одном океане, то процесс происходит со сравнительно высокой скоростью. Такая ситуация характерна сегодня для Тихого океана. Если разрастание дна и погружение происходит в разных областях, то расположенный между ними континент дрейфует в ту сторону, где происходит углубление. Под материками вязкость астеносферы выше, чем под океанами. В связи с возникающим трением появляется значительное сопротивление движению. В результате снижается скорость, с которой происходит расширение дна, если отсутствует компенсация погружения мантии в той же области. Таким образом, разрастание в Тихом океане происходит быстрее, чем в Атлантическом.

Основные положения теории тектоники литосферных плит :

Тектоника плит (plate tectonics) - современная геологическая теория о движении литосферы. Согласно данной теории, в основе глобальных тектонических процессов лежит горизонтальное перемещение относительно целостных блоков литосферы – литосферных плит. Таким образом, тектоника плит рассматривает движения и взаимодействия литосферных плит.Впервые предположение о горизонтальном движении блоков коры было высказано Альфредом Вегенером в 1920-х годах в рамках гипотезы «дрейфа континентов», но поддержки эта гипотеза в то время не получила. Лишь в 1960-х годах исследования дна океанов дали неоспоримые доказательства горизонтальных движении плит и процессов расширения океанов за счёт формирования (спрединга) океанической коры. Возрождение идей о преобладающей роли горизонтальных движений произошло в рамках «мобилистического» направления, развитие которого и повлекло разработку современной теории тектоники плит. Основные положения тектоники плит сформулированы в 1967-68 группой американских геофизиков - У. Дж. Морганом, К. Ле Пишоном, Дж. Оливером, Дж. Айзексом, Л. Сайксом в развитие более ранних (1961-62) идей американских учёных Г. Хесса и Р. Дигца о расширении (спрединге) ложа океанов.

Основные положения тектоники плит можно свети к нескольким основополагающим:

1). Верхняя каменная часть планеты разделена на две оболочки, существенно различающиеся по реологическим свойствам: жесткую и хрупкую литосферу и подстилающую её пластичную и подвижную астеносферу.
Подошва литосферы является изотермой приблизительно равной 1300°С, что соответствует температуре плавления (солидуса) мантийного материала при литостатическом давлении, существующем на глубинах первые сотни километров. Породы, лежащие в Земле над этой изотермой, достаточно холодны и ведут себя как жесткий материал, в то время как нижележащие породы того же состава достаточно нагреты и относительно легко деформируются.

2 ). Литосфера разделена по плиты, постоянно движущиеся по поверхности пластичной астеносферы. Литосфера делится на 8 крупных плит, десятки средних плит и множество мелких. Между крупными и средними плитами располагаются пояса, сложенные мозаикой мелких коровых плит.
Границы плит являются областями сейсмической, тектонической и магматической активности; внутренние области плит слабо сейсмичны и характеризуются слабой проявленностью эндогенных процессов.
Более 90 % поверхности Земли приходится на 8 крупных литосферных плит:
Австралийская плита,
Антарктическая плита,
Африканская плита,
Евразийская плита,
Индостанская плита,
Тихоокеанская плита,
Северо-Американская плита,
Южно-Американская плита.
Средние плиты: Аравийская (субконтинент), Карибская, Филиппинская, Наска и Кокос и Хуан де Фука и др..
Некоторые литосферные плиты сложены исключительно океанической корой (например, Тихоокеанская плита), другие включают фрагменты и океанической и континентальной коры.

3 ). Различают три типа относительных перемещений плит: расхождение (дивергенция), схождение (конвергенция) и сдвиговые перемещения.

Соответственно, выделяются и три типа основных границ плит.

* Дивергентные границы – границы, вдоль которых происходит раздвижение плит. Геодинамическую обстановку, при которой происходит процесс горизонтального растяжения земной коры, сопровождающийся возникновением протяженных линейно вытянутых щелевых или ровообразных впадин называют рифтогенезом. Эти границы приурочены к континентальным рифтам и срединно-океанических хребтам в океанических бассейнах. Термин «рифт» (от англ. rift – разрыв, трещина, щель) применяется к крупным линейным структурам глубинного происхождения, образованным в ходе растяжения земной коры. В плане строения они представляют собой грабенообразные структуры. Закладываться рифты могут и на континентальной, и на океанической коре, образуя единую глобальную систему, ориентированную относительно оси геоида. При этом эволюция континентальных рифтов может привести к разрыву сплошности континентальной коры и превращению этого рифта в рифт океанический (если расширение рифта прекращается до стадии разрыва континентальной коры, он заполняется осадками, превращаясь в авлакоген).


Строение континентального рифта

Процесс раздвижения плит в зонах океанских рифтов (срединно-океанических хребтов) сопровождается образованием новой океанической коры за счёт магматических базальтовых расплав поступающих из астеносферы. Такой процесс образования новой океанической коры за счёт поступления мантийного вещества называется спрединг (от англ. spread – расстилать, развёртывать).

Строение срединно-океанического хребта

1 – астеносфера, 2 – ультраосновные породы, 3 – основные породы (габброиды), 4 – комплекс параллельных даек, 5 – базальты океанического дна, 6 – сегменты океанической коры, образовавшие в разное время (I-V по мере удревнения), 7 – близповерхностный магматический очаг (с ультраосновной магмой в нижней части и основной в верхней), 8 – осадки океанического дна (1-3 по мере накопления)

В ходе спрединга каждый импульс растяжения сопровождается поступлением новой порции мантийных расплавов, которые, застывая, наращивают края расходящихся от оси СОХ плит. Именно в этих зонах происходит формирование молодой океанической коры.

* Конвергентные границы – границы, вдоль которых происходит столкновение плит. Главных вариантов взаимодействия при столкновении может быть три: «океаническая – океаническая», «океаническая – континентальная» и «континентальная - континентальная» литосфера. В зависимости от характера сталкивающихся плит, может протекать несколько различных процессов.
Субдукция – процесс поддвига океанской плиты под континентальную или другую океаническую. Зоны субдукции приурочены к осевым частям глубоководных желобов, сопряжённых с островными дугами (являющихся элементами активных окраин). На субдукционные границы приходится около 80% протяжённости всех конвергентных границ.
При столкновении континентальной и океанической плит естественным явлением является поддвиг океанической (более тяжёлой) под край континентальной; при столкновении двух океанических погружается более древняя (то есть более остывшая и плотная) из них.
Зоны субдукции имеют характерное строение: их типичными элементами служат глубоководный желоб – вулканическая островная дуга – задуговый бассейн. Глубоководный желоб образуется в зоне изгиба и поддвига субдуцирующей плиты. По мере погружения эта плита начинает терять воду (находящуюся в изобилии в составе осадков и минералов), последняя, как известно, значительно снижает температуру плавления пород, что приводит к образованию очагов плавления, питающих вулканы островных дуг. В тылу вулканической дуги обычно происходит некоторое растяжение, определяющее образование задугового бассейна. В зоне задугового бассейна растяжение может быть столь значительным, что приводит к разрыву коры плиты и раскрытию бассейна с океанической корой (так называемый процесс задугового спрединга).

Погружение субдуцирующей плиты в мантию трассируется очагами землетрясений, возникающих на контакте плит и внутри субдуцирующей плиты (более холодной и вследствие этого более хрупкой, чем окружающие мантийные породы). Эта сейсмофокальная зона получила название зона Беньофа-Заварицкого. В зонах субдукции начинается процесс формирования новой континентальной коры. Значительно более редким процессом взаимодействия континентальной и океанской плит служит процесс обдукции – надвигания части океанической литосферы на край континентальной плиты. Следует подчеркнуть, что в ходе этого процесса происходит расслоение океанской плиты, и надвигается лишь её верхняя часть – кора и несколько километров верхней мантии. При столкновении континентальных плит, кора которых более лёгкая, чем вещество мантии, и вследствие этого не способна в неё погрузиться, протекает процесс коллизии. В ходе коллизии края сталкивающихся континентальных плит дробятся, сминаются, формируются системы крупных надвигов, что приводит к росту горных сооружений со сложным складчато-надвиговым строением. Классическим примером такого процесса служит столкновение Индостанской плиты с Евразийской, сопровождающееся ростом грандиозных горных систем Гималаев и Тибета. Процесс коллизии сменяет процесс субдукции, завершая закрытие океанического бассейна. При этом в начале коллизионного процесса, когда края континентов уже сблизились, коллизия сочетается с процессом субдукции (продолжается погружение под край континента остатков океанической коры). Для коллизионных процессов типичны масштабный региональный метаморфизм и интрузивный гранитоидный магматизм. Эти процессы приводят к созданию новой континентальной коры (с её типичным гранито-гнейсовым слоем).

* Трансформные границы – границы, вдоль которых происходят сдвиговые смещения плит.

4 ). Объём поглощённой в зонах субдукции океанской коры равен объёму коры, возникающей в зонах спрединга. Это положении подчёркивает мнение о постоянстве объёма Земли. Но такое мнение не является единственным и окончательно доказанным. Не исключено, что объём планы меняется пульсационно, или происходит уменьшение его уменьшение за счёт охлаждения.

5 ). Основной причиной движения плит служит мантийная конвекция, обусловленная мантийными теплогравитационными течениями.
Источником энергии для этих течений служит разность температуры центральных областей Земли и температуры близповерхностных её частей. При этом основная часть эндогенного тепла выделяется на границе ядра и мантии в ходе процесса глубинной дифференциации, определяющего распад первичного хондритового вещества, в ходе которого металлическая часть устремляется к центру, наращивая ядро планеты, а силикатная часть концентрируются в мантии, где далее подвергается дифференциации.
Нагретые в центральных зонах Земли породы расширяются, плотность их уменьшается, и они всплывают, уступая место опускающимся более холодными и потому более тяжёлым массам, уже отдавшим часть тепла в близповерхностных зонах. Этот процесс переноса тепла идёт непрерывно, в результате чего возникают упорядоченные замкнутые конвективные ячейки. При этом в верхней части ячейки течение вещества происходит почти в горизонтальной плоскости, и именно эта часть течения определяет горизонтальное перемещение вещества астеносферы и расположенных на ней плит. В целом, восходящие ветви конвективных ячей располагаются под зонами дивергентных границ (СОХ и континентальными рифтами), нисходящие – под зонами конвергентных границ. Таким образом, основная причина движения литосферных плит – «волочение» конвективными течениями. Кроме того, на плиты действуют ещё рад факторов. В частности, поверхность астеносферы оказывается несколько приподнятой над зонами восходящих ветвей и более опущенной в зонах погружения, что определяет гравитационное «соскальзывание» литосферной плиты, находящейся на наклонной пластичной поверхности. Дополнительно действуют процессы затягивания тяжёлой холодной океанской литосферы в зонах субдукции в горячую, и как следствие менее плотную, астеносферу, а также гидравлического расклинивания базальтами в зонах СОХ.

К подошве внутриплитовых частей литосферы приложены главные движущие силы тектоники плит – силы мантийного “волочения” (англ. drag) FDO под океанами и FDC под континентами, величина которых зависит в первую очередь от скорости астеносферного течения, а последняя определяется вязкостью и мощностью астеносферного слоя. Так как под континентами мощность астеносферы значительно меньше, а вязкость значительно больше, чем под океанами, величина силы FDC почти на порядок уступает величине FDO. Под континентами, особенно их древними частями (материковыми щитами), астеносфера почти выклинивается, поэтому континенты как бы оказываются “сидящими на мели”. Поскольку большинство литосферных плит современной Земли включают в себя как океанскую, так и континентальную части, следует ожидать, что присутствие в составе плиты континента в общем случае должно “тормозить” движение всей плиты. Так оно и происходит в действительности (быстрее всего движутся почти чисто океанские плиты Тихоокеанская, Кокос и Наска; медленнее всего – Евразийская, Северо-Американская, Южно-Американская, Антарктическая и Африканская, значительную часть площади которых занимают континенты). Наконец, на конвергентных границах плит, где тяжелые и холодные края литосферных плит (слэбы) погружаются в мантию, их отрицательная плавучесть создает силу FNB (индекс в обозначении силы – от английского negative buoyance). Действие последней приводит к тому, что субдуцирующая часть плиты тонет в астеносфере и тянет за собой всю плиту, увеличивая тем самым скорость ее движения. Очевидно, сила FNB действует эпизодически и только в определенных геодинамических обстановках, например в случаях описанного выше обрушения слэбов через раздел 670 км.
Таким образом, механизмы, приводящие в движение литосферные плиты, могут быть условно отнесены к следующим двум группам: 1) связанные с силами мантийного “волочения” (mantle drag mechanism), приложенными к любым точкам подошвы плит, на рисунке – силы FDO и FDC; 2) связанные с силами, приложенными к краям плит (edge-force mechanism), на рисунке – силы FRP и FNB. Роль того или иного движущего механизма, а также тех или иных сил оценивается индивидуально для каждой литосферной плиты.

Совокупность этих процессов отражает общий геодинамический процесс, охватывающих области от поверхностных до глубинных зон Земли. В настоящее время в мантии Земли развивается двухъячейковая мантийная конвекция с закрытыми ячейками (согласно модели сквозьмантийной конвекции) или раздельная конвекция в верхней и нижней мантии с накоплением слэбов под зонами субдукции (согласно двухъярусной модели). Вероятные полюсы подъема мантийного вещества расположены в северо-восточной Африке (примерно под зоной сочленения Африканской, Сомалийской и Аравийской плит) и в районе острова Пасхи (под срединным хребтом Тихого океана – Восточно-Тихоокеанским поднятием). Экватор опускания мантийного вещества проходит примерно по непрерывной цепи конвергентных границ плит по периферии Тихого и восточной части Индийского океанов.Современный режим мантийной конвекции, начавшийся примерно 200 млн. лет назад распадом Пангеи и породивший современные океаны, в будущем сменится на одноячейковый режим (по модели сквозьмантийной конвекции) или (по альтернативной модели) конвекция станет сквозьмантийной за счет обрушения слэбов через раздел 670 км. Это, возможно, приведет к столкновению материков и формированию нового суперконтинента, пятого по счету в истории Земли.

6 ). Перемещения плит подчиняются законам сферической геометрии и могут быть описаны на основе теоремы Эйлера. Теорема вращения Эйлера утверждает, что любое вращение трёхмерного пространства имеет ось. Таким образом, вращение может быть описана тремя параметрами: координаты оси вращения (например, её широта и долгота) и угол поворота. На основании этого положения может быть реконструировано положение континентов в прошлые геологические эпохи. Анализ перемещений континентов привёл к выводу, что каждые 400-600 млн. лет они объединяются в единый суперконтинент, подвергающийся в дальнейшем распаду. В результате раскола такого суперконтинента Пангеи, произошедшего 200-150 млн. лет назад, и образовались современные континенты.

Тектоника плит (plate tectonics ) - современная геодинамическая концепция, основанная на положении о крупномасштабных горизонтальных перемещениях относительно целостных фрагментов литосферы (литосферных плит). Таким образом, тектоника плит рассматривает движения и взаимодействия литосферных плит.

Впервые предположение о горизонтальном движении блоков коры было высказано Альфредом Вегенером в 1920-х годах в рамках гипотезы «дрейфа континентов», но поддержки эта гипотеза в то время не получила. Лишь в 1960-х годах исследования дна океанов дали неоспоримые доказательства горизонтальных движении плит и процессов расширения океанов за счёт формирования (спрединга) океанической коры. Возрождение идей о преобладающей роли горизонтальных движений произошло в рамках «мобилистического» направления, развитие которого и повлекло разработку современной теории тектоники плит. Основные положения тектоники плит сформулированы в 1967-68 группой американских геофизиков - У. Дж. Морганом, К. Ле Пишоном, Дж. Оливером, Дж. Айзексом, Л. Сайксом в развитие более ранних (1961-62) идей американских учёных Г. Хесса и Р. Дигца о расширении (спрединге) ложа океанов

Основные положения тектоники плит

Основные положения тектоники плит можно свети к нескольким основополагающим

1. Верхняя каменная часть планеты разделена на две оболочки, существенно различающиеся по реологическим свойствам: жесткую и хрупкую литосферу и подстилающую её пластичную и подвижную астеносферу.

2. Литосфера разделена по плиты, постоянно движущиеся по поверхности пластичной астеносферы. Литосфера делится на 8 крупных плит, десятки средних плит и множество мелких. Между крупными и средними плитами располагаются пояса, сложенные мозаикой мелких коровых плит.

Границы плит являются областями сейсмической, тектонической и магматической активности; внутренние области плит слабо сейсмичны и характеризуются слабой проявленностью эндогенных процессов.

Более 90 % поверхности Земли приходится на 8 крупных литосферных плит:

Австралийская плита,
Антарктическая плита,
Африканская плита,
Евразийская плита,
Индостанская плита,
Тихоокеанская плита,
Северо-Американская плита,
Южно-Американская плита.

Средние плиты: Аравийская (субконтинент), Карибская, Филиппинская, Наска и Кокос и Хуан де Фука и др..

Некоторые литосферные плиты сложены исключительно океанической корой (например, Тихоокеанская плита), другие включают фрагменты и океанической и континентальной коры.

3. Различают три типа относительных перемещений плит: расхождение (дивергенция), схождение (конвергенция) и сдвиговые перемещения .

Соответственно, выделяются и три типа основных границ плит.

Дивергентные границы – границы, вдоль которых происходит раздвижение плит.

Процессы горизонтального растяжения литосферы называют рифтогенезом . Эти границы приурочены к континентальным рифтам и срединно-океанических хребтам в океанических бассейнах.

Термин «рифт» (от англ. rift – разрыв, трещина, щель) применяется к крупным линейным структурам глубинного происхождения, образованным в ходе растяжения земной коры. В плане строения они представляют собой грабенообразные структуры.

Закладываться рифты могут и на континентальной, и на океанической коре, образуя единую глобальную систему, ориентированную относительно оси геоида. При этом эволюция континентальных рифтов может привести к разрыву сплошности континентальной коры и превращению этого рифта в рифт океанический (если расширение рифта прекращается до стадии разрыва континентальной коры, он заполняется осадками, превращаясь в авлакоген).


Процесс раздвижения плит в зонах океанских рифтов (срединно-океанических хребтов) сопровождается образованием новой океанической коры за счёт магматических базальтовых расплав поступающих из астеносферы. Такой процесс образования новой океанической коры за счёт поступления мантийного вещества называется спрединг (от англ. spread – расстилать, развёртывать) .

Строение срединно-океанического хребта

В ходе спрединга каждый импульс растяжения сопровождается поступлением новой порции мантийных расплавов, которые, застывая, наращивают края расходящихся от оси СОХ плит.

Именно в этих зонах происходит формирование молодой океанической коры.

Конвергентные границы – границы, вдоль которых происходит столкновение плит. Главных вариантов взаимодействия при столкновении может быть три: «океаническая – океаническая», «океаническая – континентальная» и «континентальная - континентальная» литосфера. В зависимости от характера сталкивающихся плит, может протекать несколько различных процессов.

Субдукция – процесс поддвига океанской плиты под континентальную или другую океаническую. Зоны субдукции приурочены к осевым частям глубоководных желобов, сопряжённых с островными дугами (являющихся элементами активных окраин). На субдукционные границы приходится около 80% протяжённости всех конвергентных границ.

При столкновении континентальной и океанической плит естественным явлением является поддвиг океанической (более тяжёлой) под край континентальной; при столкновении двух океанических погружается более древняя (то есть более остывшая и плотная) из них.

Зоны субдукции имеют характерное строение: их типичными элементами служат глубоководный желоб – вулканическая островная дуга – задуговый бассейн. Глубоководный желоб образуется в зоне изгиба и поддвига субдуцирующей плиты. По мере погружения эта плита начинает терять воду (находящуюся в изобилии в составе осадков и минералов), последняя, как известно, значительно снижает температуру плавления пород, что приводит к образованию очагов плавления, питающих вулканы островных дуг. В тылу вулканической дуги обычно происходит некоторое растяжение, определяющее образование задугового бассейна. В зоне задугового бассейна растяжение может быть столь значительным, что приводит к разрыву коры плиты и раскрытию бассейна с океанической корой (так называемый процесс задугового спрединга).

Погружение субдуцирующей плиты в мантию трассируется очагами землетрясений, возникающих на контакте плит и внутри субдуцирующей плиты (более холодной и вследствие этого более хрупкой, чем окружающие мантийные породы). Эта сейсмофокальная зона получила название зона Беньофа-Заварицкого .

В зонах субдукции начинается процесс формирования новой континентальной коры.

Значительно более редким процессом взаимодействия континентальной и океанской плит служит процесс обдукции – надвигания части океанической литосферы на край континентальной плиты. Следует подчеркнуть, что в ходе этого процесса происходит расслоение океанской плиты, и надвигается лишь её верхняя часть – кора и несколько километров верхней мантии.

При столкновении континентальных плит, кора которых более лёгкая, чем вещество мантии, и вследствие этого не способна в неё погрузиться, протекает процесс коллизии . В ходе коллизии края сталкивающихся континентальных плит дробятся, сминаются, формируются системы крупных надвигов, что приводит к росту горных сооружений со сложным складчато-надвиговым строением. Классическим примером такого процесса служит столкновение Индостанской плиты с Евразийской, сопровождающееся ростом грандиозных горных систем Гималаев и Тибета.

Модель процесса коллизии

Процесс коллизии сменяет процесс субдукции, завершая закрытие океанического бассейна. При этом в начале коллизионного процесса, когда края континентов уже сблизились, коллизия сочетается с процессом субдукции (продолжается погружение под край континента остатков океанической коры).

Для коллизионных процессов типичны масштабный региональный метаморфизм и интрузивный гранитоидный магматизм. Эти процессы приводят к созданию новой континентальной коры (с её типичным гранито-гнейсовым слоем).

Трансформные границы – границы, вдоль которых происходят сдвиговые смещения плит.

Границы литосферных плит Земли

1 – дивергентные границы (а – срединно-океанские хребты, б – континентальные рифты); 2 – трансформные границы; 3 – конвергентные границы (а – островодужные, б – активные континентальные окраины, в – коллизионные); 4 – направления и скорости (см/год) движения плит.

4. Объём поглощённой в зонах субдукции океанской коры равен объёму коры, возникающей в зонах спрединга. Это положении подчёркивает мнение о постоянстве объёма Земли. Но такое мнение не является единственным и окончательно доказанным. Не исключено, что объём планы меняется пульсационно, или происходит уменьшение его уменьшение за счёт охлаждения.

5. Основной причиной движения плит служит мантийная конвекция , обусловленная мантийными теплогравитационными течениями.

Источником энергии для этих течений служит разность температуры центральных областей Земли и температуры близповерхностных её частей. При этом основная часть эндогенного тепла выделяется на границе ядра и мантии в ходе процесса глубинной дифференциации, определяющего распад первичного хондритового вещества, в ходе которого металлическая часть устремляется к центру, наращивая ядро планеты, а силикатная часть концентрируются в мантии, где далее подвергается дифференциации.

Нагретые в центральных зонах Земли породы расширяются, плотность их уменьшается, и они всплывают, уступая место опускающимся более холодными и потому более тяжёлым массам, уже отдавшим часть тепла в близповерхностных зонах. Этот процесс переноса тепла идёт непрерывно, в результате чего возникают упорядоченные замкнутые конвективные ячейки. При этом в верхней части ячейки течение вещества происходит почти в горизонтальной плоскости, и именно эта часть течения определяет горизонтальное перемещение вещества астеносферы и расположенных на ней плит. В целом, восходящие ветви конвективных ячей располагаются под зонами дивергентных границ (СОХ и континентальными рифтами), нисходящие – под зонами конвергентных границ.

Таким образом, основная причина движения литосферных плит – «волочение» конвективными течениями.

Кроме того, на плиты действуют ещё рад факторов. В частности, поверхность астеносферы оказывается несколько приподнятой над зонами восходящих ветвей и более опущенной в зонах погружения, что определяет гравитационное «соскальзывание» литосферной плиты, находящейся на наклонной пластичной поверхности. Дополнительно действуют процессы затягивания тяжёлой холодной океанской литосферы в зонах субдукции в горячую, и как следствие менее плотную, астеносферу, а также гидравлического расклинивания базальтами в зонах СОХ.

Рисунок - Силы, действующие на литосферные плиты.

К подошве внутриплитовых частей литосферы приложены главные движущие силы тектоники плит – силы мантийного “волочения” (англ. drag) FDO под океанами и FDC под континентами, величина которых зависит в первую очередь от скорости астеносферного течения, а последняя определяется вязкостью и мощностью астеносферного слоя. Так как под континентами мощность астеносферы значительно меньше, а вязкость значительно больше, чем под океанами, величина силы FDC почти на порядок уступает величине FDO . Под континентами, особенно их древними частями (материковыми щитами), астеносфера почти выклинивается, поэтому континенты как бы оказываются “сидящими на мели”. Поскольку большинство литосферных плит современной Земли включают в себя как океанскую, так и континентальную части, следует ожидать, что присутствие в составе плиты континента в общем случае должно “тормозить” движение всей плиты. Так оно и происходит в действительности (быстрее всего движутся почти чисто океанские плиты Тихоокеанская, Кокос и Наска; медленнее всего – Евразийская, Северо-Американская, Южно-Американская, Антарктическая и Африканская, значительную часть площади которых занимают континенты). Наконец, на конвергентных границах плит, где тяжелые и холодные края литосферных плит (слэбы) погружаются в мантию, их отрицательная плавучесть создает силу FNB (индекс в обозначении силы – от английского negative buoyance ). Действие последней приводит к тому, что субдуцирующая часть плиты тонет в астеносфере и тянет за собой всю плиту, увеличивая тем самым скорость ее движения. Очевидно, сила FNB действует эпизодически и только в определенных геодинамических обстановках, например в случаях описанного выше обрушения слэбов через раздел 670 км.

Таким образом, механизмы, приводящие в движение литосферные плиты, могут быть условно отнесены к следующим двум группам: 1) связанные с силами мантийного “волочения” (mantle drag mechanism ), приложенными к любым точкам подошвы плит, на рис. 2.5.5 – силы FDO и FDC ; 2) связанные с силами, приложенными к краям плит (edge-force mechanism ), на рисунке – силы FRP и FNB . Роль того или иного движущего механизма, а также тех или иных сил оценивается индивидуально для каждой литосферной плиты.

Совокупность этих процессов отражает общий геодинамический процесс, охватывающих области от поверхностных до глубинных зон Земли.

Мантийная конвекция и геодинамические процессы

В настоящее время в мантии Земли развивается двухъячейковая мантийная конвекция с закрытыми ячейками (согласно модели сквозьмантийной конвекции) или раздельная конвекция в верхней и нижней мантии с накоплением слэбов под зонами субдукции (согласно двухъярусной модели). Вероятные полюсы подъема мантийного вещества расположены в северо-восточной Африке (примерно под зоной сочленения Африканской, Сомалийской и Аравийской плит) и в районе острова Пасхи (под срединным хребтом Тихого океана – Восточно-Тихоокеанским поднятием).

Экватор опускания мантийного вещества проходит примерно по непрерывной цепи конвергентных границ плит по периферии Тихого и восточной части Индийского океанов.

Современный режим мантийной конвекции, начавшийся примерно 200 млн. лет назад распадом Пангеи и породивший современные океаны, в будущем сменится на одноячейковый режим (по модели сквозьмантийной конвекции) или (по альтернативной модели) конвекция станет сквозьмантийной за счет обрушения слэбов через раздел 670 км. Это, возможно, приведет к столкновению материков и формированию нового суперконтинента, пятого по счету в истории Земли.

6. Перемещения плит подчиняются законам сферической геометрии и могут быть описаны на основе теоремы Эйлера. Теорема вращения Эйлера утверждает, что любое вращение трёхмерного пространства имеет ось. Таким образом, вращение может быть описана тремя параметрами: координаты оси вращения (например, её широта и долгота) и угол поворота. На основании этого положения может быть реконструировано положение континентов в прошлые геологические эпохи. Анализ перемещений континентов привёл к выводу, что каждые 400-600 млн. лет они объединяются в единый суперконтинент, подвергающийся в дальнейшем распаду. В результате раскола такого суперконтинента Пангеи, произошедшего 200-150 млн. лет назад, и образовались современные континенты.

Некоторые доказательства реальности механизма тектоники литосферных плит

Удревнение возраста океанической коры по мере удаления от осей спрединга (см. рисунок). В этом же направлении отмечается нарастание мощности и стратиграфической полноты осадочного слоя.

Рисунок - Карта возраста пород океанического дна Северной Атлантики (по У. Питмену и М. Тальвани, 1972). Разным цветом выделены участки океанского дна различных возрастных интервалов; цифрами указан возраст в миллионах лет.

Геофизические данные.

Рисунок – Томографический профиль через Эллинский желоб, остров Крит и Эгейское море. Серые кружки – гипоцентры землетрясений. Синим цветом показана пластина погружающейся холодной мантии, красным – горячая мантия (по данным В. Спэкмена, 1989)

Остатки огромной плиты Фаралон, исчезнувшей в зоне субдукции под Северной и Южной Америками, фиксируемые в виде слейбов «холодной» мантии (разрез поперек Сев. Америки, по S-волнам). По Grand, Van der Hilst, Widiyantoro, 1997, GSA Today, v. 7, No. 4, 1-7

Линейные магнитные аномалии в океанах были обнаружены в 50-х годах при геофизическом изучении Тихого океана. Это открытие позволило в 1968 году Хессу и Дицу сформулировать теорию спрединга океанического дна, которая выросла в теорию тектоники плит. Они стали одним из самых веских доказательств правильности теории.

Рисунок - Образование полосовых магнитных аномалий при спрединге.

Причиной происхождения полосовых магнитных аномалий является процесс рождения океанической коры в зонах спрединга срединно-океанических хребтов, излившиеся базальты при остывании ниже точки Кюри в магнитном поле Земли, приобретают остаточную намагниченность. Направление намагниченности совпадает с направлением магнитного поля Земли, однако вследствие периодических инверсий магнитного поля Земли излившиеся базальты образуют полосы с различным направлением намагниченности: прямым (совпадает с современным направлением магнитного поля) и обратным.

Рисунок - Схема образования полосовой структуры магнитоактивного слоя и магнитных аномалий океана (модель Вайна – Мэтьюза).

  • 1)_Первая гипотеза возникла во второй половине 18 века и получила название гипотеза поднятий. Ее предложили М. В. Ломоносов, немецкие ученые А. фон Гумбольдт и Л. фон Бух, шотландец Дж. Хаттон. Суть гипотезы в следующем - поднятия гор вызваны подъемом из глубин Земли расплавленной магмы, которая на своем пути оказывала раздвигающее действие на окружающие слои, приводившее к образованию складок, пропастей разной величины. Ломоносов впервые выделил два типа тектонических движений - медленные и быстрые, вызывающие землетрясения.
  • 2) В середине 19 века на смену этой гипотезе пришла гипотеза контракции французского ученого Эли де Бомона. В ее основе была космогоническая гипотеза Канта и Лапласа о происхождении Земли как первоначально раскаленного тела с последующим постепенным охлаждением. Этот процесс приводил к уменьшению объема Земли, и в результате Земная кора сжималась, и возникали складчатые горные сооружения подобные гигантским «морщинам».
  • 3) В середине 19 века англичанин Д. Эйри и священник из Калькутты Д. Пратт открыли закономерность в положениях аномалий силы тяжести - высоко в горах аномалии оказывались отрицательными, т. е. обнаруживался дефицит массы, а в океанах аномалии были положительными. Чтобы объяснить это явление предложили гипотезу, согласно которой земная кора плавает на более тяжелом и вязком субстрате и находится в изостатическом равновесии, которое нарушается действием внешних радиальных сил.
  • 4) Космогоническую гипотезу Канта-Лапласа сменила гипотеза О. Ю. Шмидта о первоначальном твердом, холодном и однородном состоянии Земли. Возникла необходимость иного подхода в объяснении формирования земной коры. Такую гипотезу предложил В. В. Белоусов. Называется она радиомиграционная. Суть этой гипотезы:
  • 1. Основной энергетический фактор - радиоактивность. Разогрев Земли с последующим уплотнением вещества происходил благодаря теплу радиоактивного распада. Радиоактивные элементы на начальных этапах развития Земли распределялись равномерно, и поэтому разогрев был сильным и повсеместным.
  • 2. Нагревание первичного вещества и его уплотнение привело к разделению магмы или ее дифференциации на базальтовую и гранитную. В последней концентрировались радиоактивные элементы. Как более легкая, гранитная магма “всплывала” в верхнюю часть Земли, а базальтовая погружалась вниз. При этом происходила и температурная дифференциация.

Современные геотектонические гипотезы разрабатываются, используя идеи мобилизма. В основе этой идеи лежат представления о преобладании в тектонических движениях земной коры горизонтальных движений.

  • 5) Впервые для объяснения механизма и последовательности геотектонических процессов немецким ученым А. Вегенером была предложена гипотеза горизонтального дрейфа континентов.
  • 1. Сходство очертаний берегов Атлантического океана, особенно в южном полушарии (у Ю. Америки и Африки).
  • 2. Сходство геологического строения континентов (совпадение некоторых региональных тектонических простираний, сходство в составе и возрасте пород и др.).

гипотеза тектоники литосферных плит или новую глобальную тектонику. Главные положения этой гипотезы:

  • 1. Земная кора с верхней частью мантии образует литосферу, которая подстилается пластичной астеносферой. Литосфера разделена на крупные блоки (плиты). Границами плит являются рифтовые зоны, глубоководные желоба, к которым примыкают разломы, глубоко проникающие в мантию - это зоны Беньофа-Заварицкого, а также зоны современной сейсмической активности.
  • 2. Литосферные плиты горизонтально перемещаются. Это движение определяют два основных процесса - раздвигание плит или спрединг, погружение одной плиты под другую - субдукция или надвигание одной плиты на другую - обдукция.
  • 3. В зону раздвига периодически поступают из мантии базальты. Доказательством раздвига служат полосовые магнитные аномалии в базальтах.
  • 4. В районах островных дуг выделяются зоны скопления очагов глубокофокусных землетрясений, которые отражают зоны погружения плиты с базальтовой океанической корой под континентальную земную кору, т. е. эти зоны отражают зоны субдукции. В этих зонах, вследствие дробления и плавления, часть материала погружается, а другая в виде вулканов и интрузий проникает в континент и тем самым происходит наращивание мощности континентальной коры.

Тектоника литосферных плит (plate tectonics) - современная геологическая теория о движении литосферы. Согласно данной теории, в основе глобальных тектонических процессов лежит горизонтальное перемещение относительно целостных блоков литосферы - литосферных плит. Таким образом, тектоника плит рассматривает движения и взаимодействия литосферных плит. Впервые предположение о горизонтальном движении блоков коры было высказано Альфредом Вегенером в 1920-х годах в рамках гипотезы «дрейфа континентов», но поддержки эта гипотеза в то время не получила. Лишь в 1960-х годах исследования дна океанов дали неоспоримые доказательства горизонтальных движении плит и процессов расширения океанов за счёт формирования (спрединга) океанической коры. Возрождение идей о преобладающей роли горизонтальных движений произошло в рамках «мобилистического» направления, развитие которого и повлекло разработку современной теории тектоники плит. Основные положения тектоники плит сформулированы в 1967-68 группой американских геофизиков - У. Дж. Морганом, К. Ле Пишоном, Дж. Оливером, Дж. Айзексом, Л. Сайксом в развитие более ранних (1961-62) идей американских учёных Г. Хесса и Р. Дигца о расширении (спрединге) ложа океанов. 1). Верхняя каменная часть планеты разделена на две оболочки, существенно различающиеся по реологическим свойствам: жесткую и хрупкую литосферу и подстилающую её пластичную и подвижную астеносферу. 2). Литосфера разделена по плиты, постоянно движущиеся по поверхности пластичной астеносферы. Литосфера делится на 8 крупных плит, десятки средних плит и множество мелких. Между крупными и средними плитами располагаются пояса, сложенные мозаикой мелких коровых плит. 3). Различают три типа относительных перемещений плит: расхождение (дивергенция), схождение (конвергенция) и сдвиговые перемещения. 4). Объём поглощённой в зонах субдукции океанской коры равен объёму коры, возникающей в зонах спрединга. Это положении подчёркивает мнение о постоянстве объёма Земли. 5). Основной причиной движения плит служит мантийная конвекция, обусловленная мантийными теплогравитационными течениями.

Источником энергии для этих течений служит разность температуры центральных областей Земли и температуры близповерхностных её частей. При этом основная часть эндогенного тепла выделяется на границе ядра и мантии в ходе процесса глубинной дифференциации, определяющего распад первичного хондритового вещества, в ходе которого металлическая часть устремляется к центру, наращивая ядро планеты, а силикатная часть концентрируются в мантии, где далее подвергается дифференциации. 6). Перемещения плит подчиняются законам сферической геометрии и могут быть описаны на основе теоремы Эйлера. Теорема вращения Эйлера утверждает, что любое вращение трёхмерного пространства имеет ось. Таким образом, вращение может быть описана тремя параметрами: координаты оси вращения (например, её широта и долгота) и угол поворота.

Географические следствия движения Лит плит(Повышается сейсмическая активность, образуются разломы, появляются хребты, и так далее). В теории тектоники плит ключевое положение занимает понятие геодинамической обстановки -- характерной геологической структуры с определённым соотношением плит. В одной и той же геодинамической обстановке происходят однотипные тектонические, магматические, сейсмические и геохимические процессы.

Здравствуйте дорогой читатель. Никогда ранее я не думал, что мне придётся писать эти строки. Довольно долго не решался записать всё то, что мне суждено было открыть, если это вообще так можно назвать. До сих пор порой задумываюсь, а не сошел ли я с ума.

Как то вечером ко мне подошла дочь с просьбой показать на карте где и какой океан находится на нашей планете, а так как печатной физической карты мира у меня дома нет, то я открыл на компьютере электронную карту Google, переключил её в режим вида со спутника и начал ей потихоньку всё объяснять. Когда от Тихого океана дошел до Атлантического и приблизил поближе, чтобы показать дочери получше, то меня словно током ударило и я вдруг увидел то что видит любой человек на нашей планете, но совершенно другими глазами. Как и все я до этого момента не понимал что такое же вижу на карте, а тут у меня словно глаза открылись. Но всё это эмоции, а из эмоций щи не сваришь. Так что давайте попробуем вместе увидеть что же такое мне открылось карте Google, а открылось ни много ни мало - след столкновения нашей Земли Матушки с неведомым небесным телом, приведшего к тому, что принято называть Великим Потом.


Посмотрите внимательно в левый нижний угол фотографии и задумайтесь: вам это ничего не напоминает?Не знаю как вам, а мне это напоминает четкий след от удара некого округлого небесного тела о поверхность нашей планеты. Причём удар был перед материком Южная Америка и Антарктида, которые от удара теперь слегка вогнуты в сторону направления удара и разделяются в этом месте проливом, носящим имя пролив Дрейка, пирата, который якобы и открыл этот пролив в прошлом.

На самом же деле этот пролив представляет собой рытвину, оставленную в момент удара и заканчивающуюся округлым «пятном контакта» небесного тела с поверхностью нашей планеты. Давайте посмотрим на это «пятно контакта» поближе и повнимательнее.

Приблизив, мы видим округлое пятно, имеющее вогнутую поверхность и заканчивающееся справа, то есть со стороны по направлению удара, характерным холмом с практически отвесной гранью, имеющей опять же характерные возвышения, которые выходят на поверхность мирового океана в виде островов. Для того чтобы лучше понять характер образования этого «пятна контакта» вы можете проделать такой же опыт, какой проделал я. Для опыта необходима мокрая песчаная поверхность. Прекрасно подойдёт поверхность песка на берегу реки или моря. Во время опыта необходимо произвести плавное движение рукой, во время которого вы ведете рукой над песком, затем касаетесь пальцем песка и, не прекращая движение руки, оказываете на него давление, тем самым сгребая некоторое количество песка пальцем и затем через некоторое время производите отрыв своего пальца от поверхности песка. Проделали? А теперь посмотрите на результат данного несложного опыта и вы увидите картину, полностью аналогичную той, что представлена на фото ниже.

Есть ещё один забавный нюанс. По заявлениям исследователей, северный полюс нашей планеты в прошлом сместился примерно на две тысячи километров. Если же измерить протяженность так называемой рытвины на дне океана в проливе Дрейка и заканчивающейся «пятном контакта», то она так же примерно соответствует двум тысячам километров. На фото я сделал замер средствами программы Google Maps. Причем исследователи не могут ответить на вопрос что послужило причиной сдвига полюса. Я не берусь утверждать с вероятностью в 100 %, но всё же стоит задуматься над вопросом: а не эта ли катастрофа послужила причиной смещения полюсов планеты Земля на эти самые две тысячи километров?

Теперь давайте зададимся вопросом: что же произошло, после того как небесное тело ударило по касательной в планету и вновь ушло в просторы космоса? Вы спросите: почему по касательной и почему обязательно ушло, а не пробило поверхность и погрузилось в недра планеты? Тут всё тоже очень просто объясняется. Не стоит забывать о направлении вращения нашей планеты. Именно то стечение обстоятельств, что небесное тело дарило по ходу вращения нашей планеты спасло её от разрушения и позволило небесному телу так сказать соскользнуть и уйти прочь, а не зарыться в недра планеты. Не меньшая удача была в том, что удар пришелся в океан перед материком, а не в сам материк, так как воды океана несколько сдемпфировали удар и сыграли роль своеобразной смазки при соприкосновении небесных тел, но этот факт имел и обратную сторону медали - воды океана сыграли и свою разрушительную роль уже после отрыва тела и ухода его в космос.

Теперь давайте посмотрим что же произошло далее. Думаю, никому не надо доказывать, что следствием удара, приведшего к образованию пролива Дрейка, послужило образование огромной многокилометровой волны, которая на огромной скорости понеслась вперёд, сметая всё на своём пути. Давайте проследим путь этой волны.

Волна пересекла Атлантический океан и первой преградой на её пути встала южная оконечность Африки, правда она пострадала относительно немного, та как волна задела её своим краем и слегка повернула к югу, где налетела на Австралию. А вот Австралии повезло гораздо меньше. Она приняла на себя удар волны и была практически смыта, что очень хорошо видно на карте.

Далее волна пересекла Тихий океан и прошла между Америками, опять же своим краем зацепив Северную Америку. Последствия этого мы видим и на карте и в фильмах Склярова, который весьма живописно расписал последствия Великого Потопа в Северной Америке. Если кто не смотрел или уже подзабыл, то может пересмотреть эти фильмы, благо они давно уже выложены в свободный доступ в сети Интернет. Это весьма познавательные фильмы, правда далеко не всё в них стоит воспринимать всерьёз.


Далее волна второй раз пересекла Атлантический океан и всей своей массой на полном ходу ударила в северную оконечность Африки, сметая и смывая всё на своём пути. Это так же прекрасно видно на карте. С моей точки зрения таким странным расположением пустынь на поверхности нашей планеты мы обязаны вовсе не причудам климата и не безрассудной деятельности человека, а именно разрушительному и безпощадному воздействию волны во время Великого потопа, которая не только сметала всё на своём пути, но и в буквальном смысле этого слова всё смывала, включая не только постройки и растительность, но и плодородный слой почвы на поверхности материков нашей планеты.

После Африки волна прокатилась по Азии и вновь пересекла Тихий океан и, пройдя в разрез между нашим материком и Северной Америкой ушла на северный полюс через Гренландию. Достигнув северного полюса нашей планеты волна сама себя погасила, т. к. она исчерпала и свою мощь, последовательно тормозясь о материки, на которые она налетала и тем что на северном полюсе в конце концов догнала сама себя.

После этого пошел откат воды уже потухшей волны со стороны Северного полюса на юг. Часть воды прошла через наш материк. Именно этим можно объяснить объяснить до сих пор затопленную северную оконечность нашего материка и забросанный землёй Финский залив и города западной Европы, в том числе наш Петроград и Москву, погребённые под многометровым слоем земли, которую принесли, отхлынувшего с Северного полюса.

Карта тектонических плит и разломов Земной коры

Если был удар небесного тела, то вполне разумно поискать его последствия в толще Земной коры. Ведь удар такой силы просто не мог не оставить никаких следов. Давайте обратимся к карте тектонических плит и разломов Земной коры.

Что же мы там видим на этой карте? На карте четко виден тектонический разлом на месте не только следа, оставленного небесным телом, но и вокруг так называемого «пятна контакта» на месте отрыва небесного тела от поверхности Земли. И эти разломы лишний раз подтверждают правильность моих выводов об ударе некого небесного тела. И удар был такой силы, что не только снёс перешеек между Южной Америкой и Антарктидой, но и привёл к образованию тектонического разлома в Земной коре в данном месте.

Странности траектории движения волны по поверхности планеты

Думаю стоит поговорить ещё об одном аспекте движения волны, а именно о её непрямолинейности и неожиданных отклонениях то в одну, то в другую сторону. Нас всех с детства приучили считать, что мы проживаем на планете, которая имеет форму шара, который слегка сплюснут с полюсов.

Я довольно долго и сам придерживался такого же мнения. И каково же было моё удивление, когда в 2012 году мне попались результаты исследования Европейского космического агентства ESA с использованием данных, полученных аппаратом GOCE (Gravity field and steady-state Ocean Circulation Explorer — спутник для исследования гравитационного поля и постоянных океанических течений).

Ниже я привожу несколько фотографий настоящей формы нашей планеты. Причём стоит учесть тот факт, что это форма самой планеты без учета находящихся на её поверхности вод, образующих мировой океан. Вы можете задать вполне законный вопрос: какое отношение эти фотографии имеют к обсуждаемой здесь теме? С моей точки зрения самое что ни на есть прямое. Ведь мало того, что волна движется по поверхности небесного тела, имеющего неправильную форму, но на её движение оказывает удары фронта волны.

Какими бы ни были циклопическими размеры волны, но сбрасывать со счетов эти факторы нельзя, ведь то что мы считаем прямой линией на поверхности глобуса, имеющего форму правильного шара, на деле оказывается далёкой от прямолинейной траектории и наоборот - то что в реальности является прямолинейной траекторией на поверхности неправильной формы на глобусе превратится в замысловатую кривую.

И это мы ещё не рассматривали тот факт, что при движении по поверхности планеты, волна многократно встречала на своём пути различные препятствия в виде материков. И если вернуться к предполагаемой траектории движения волны по поверхности нашей планеты, то можно заметить, что и Африку в первый раз и Австралию она задевала своей периферийной частью, а не всем фронтом. Это не могло не влиять не только на саму траекторию движения, но и на рост фронта волны, который каждый раз при встрече с препятствием частично обрывался и волне приходилось начинать расти заново. А если рассмотреть момент её прохождения между двумя Америками, то нельзя не заметить тот факт, что при этом фронт волны не только в очередной раз был усечен, но и часть волны за счет переотражения повернула на юг и смыла побережье Южной Америки.

Примерное время катастрофы

Теперь попробуем выяснить когда же произошла эта катастрофа. Для этого можно было бы снарядить экспедицию на место катастрофы, детально его обследовать, взять всевозможные пробы грунта, пород и пытаться их исследовать в лабораториях, затем проследовать по маршруту движения Великого потопа и вновь проделать ту же работу. Но всё это стоило бы громадных денег, растянулось бы на долгие, долгие годы и совсем не обязательно, что на проведение данных работ хватило бы всей моей жизни.

Но так ли всё это необходимо и нельзя ли обойтись хотя бы пока, на первых порах без столь дорогостоящих и ресурсоёмких мероприятий? Я считаю, что на данном этапе для установления примерного времени катастрофы мы с вами вполне сможем обойтись информацией, добытой ранее и находящейся сейчас в открытых источниках, как мы уже сделали при рассмотрении планетарной катастрофы, приведшей к Великому потопу.

Для этого нам следует обратимся к физическим картам мира различных веков и установить когда же на них появился пролив Дрейка. Ведь ранее мы установили, что именно пролив Дрейка образовался в результате и на месте данной планетарной катастрофы.

Ниже представлены физические карты, которые я смог найти в открытом доступе и подлинность которых не вызывает особого недоверия.

Вот карта Мира, датируемая 1570 годом от Рождества Христова


Как мы видим, на этой карте пролива Дрейка нет и Южная Америка всё ещё соединяется с Антарктидой. А это значит, что в шестнадцатом веке катастрофы ещё не было.

Давайте возьмём карту начала семнадцатого века и проверим не появились ли пролив Дрейка и своеобразные очертания Южной Америки и Антарктиды на карте в семнадцатом веке. Ведь не могли же мореплаватели не заметить такого изменения в ландшафте планеты.

Вот карта, датируемая началом семнадцатого века. К сожалению более точной датировки, как в случае с первой картой, у меня нет. На ресурсе, где я нашел эту карту, стояла именно такая датировка «начало семнадцатого века». Но в данном случае это не носит принципиального характера.

Дело в том, что и на этой карте и Южная Америка и Антарктида и перемычка между ними находятся на своём месте, а следовательно либо катастрофа ещё не случилась, либо картограф не знал о произошедшем, правда в это верится с трудом, зная масштаб катастрофы и все те последствия, к которым она привела.

Вот очередная карта. На этот раз датировка карты более точная. Она датируется так же семнадцатым веком - это 1630 год от Рождества Христова.


И что же мы видим на этой карте? Хоть очертания материков прорисованы на ней и не столь хорошо, как в предыдущей, но отчетливо видно, что пролива в современном его виде на карте нет.

Ну что ж, видимо и в данном случае повторяется картина, описанная при рассмотрении предыдущей карты. Продолжаем движение по временной шкале в сторону наших дней и в очередной раз берём карту более свежую, чем предыдущая.

На этот раз физической карты мира я не нашел. Нашел карту Северной и Южной Америк, кроме того на ней не отображена Антарктида вообще. Но это ведь не столь важно. Ведь очертания южной оконечности Южной Америки мы помним по предыдущим картам и любые в них изменения то мы сможем заметить и без Антарктиды. Зато с датировкой карты в этот раз полный порядок - она датирована самым концом семнадцатого века, а именно 1686 годом от Рождества Христова.

Давайте посмотрим на Южную Америку и сверим её очертания с тем, что видели на предыдущей карте.

На этой карте мы видим наконец-то не набившие уже оскомину допотопные очертания Южной Америки и перешеек, соединяющий Южную Америку с Антарктидой на месте современного и привычного пролива Дрейка, а самую что ни на есть привычную современную Южную Америку с изогнутой в сторону «пятна контакта» южной оконечностью.


Какие выводы можно сделать из всего изложенного выше? Есть два довольно простых и очевидных вывода:



    1. Если допустить, что картографы действительно составляли карты в те времена, которыми датированы карты, то катастрофа произошла в пятидесятилетний промежуток между 1630 и 1686 годами.





    1. Если допустить, что картографы для составления своих карт использовали древние карты и лишь копировали их и выдавали за свои, то можно утверждать лишь то, что катастрофа произошла ранее 1570 года от рождества Христова, а в семнадцатом веке при повторном заселении Земли были установлены неточности уже имеющихся карт и в них были внесены уточнения для приведения их в соответствие с реальным ландшафтом планеты.



Какой из этих выводов правильный, а какой ложный я, к моему великому сожалению, судить не могу, т. к. для этого имеющейся информации пока явно недостаточно.

Подтверждение катастрофы

Где же можно найти подтверждение факта катастрофы, кроме физических карт, о которых мы говорили выше. Боюсь показаться неоригинальным, но ответ будет довольно прорст: во первых у нас с вами под ногами и во вторых в произведениях искусства, а именно в картинах художников. Сомневаюсь, что кто-либо из очевидцев смог бы запечатлеть саму волну, но вот последствия этой трагедии вполне себе запечатлевали. Существовало довольно большое количество художников, которые писали картины, на которых отражалась картина жуткой разрухи, которая царила в семнадцатом и восемнадцатом веках на месте Египта, современной западной Европы и Руси Матушки. Вот только предусмотрительно нам объявили, что эти художники писали не с натуры, а отображали на свотх полотнах так называемый воображаемый ими мир. Приведу работы лишь нескольких довольно ярких представителей сего жанра:

Вот как выглядели ставшие уже нам привычные древности Египта, до того как их в буквальном смысле этого слова откопали из под толстого слоя песка.

А что же в это время было в Европе? Нам помогут понять Giovanni Battista Piranesi, Hubert Robert и Charles-Louis Clerisseau.

Но это далеко не все факты, что можно привести в подтверждение катастрофы и которые ещё только предстоит мне систематизировать и описать. Есть ещё засыпанные землёй на несколько метров города на Руси Матушке, есть Финский залив, который так же засыпан землёй и стал по настоящему судоходным лишь в конце девятнадцатого века, когда по его дну был прокопан первый в мире морской канал. Есть солёные пески Москва-реки, морские раковины и чертовы пальцы, которые я ещё пацаном откапывал в лесных песках в Брянской области. Да и сам Брянск, который по официальной исторической легенде получил своё название от дебрей, якобы на месте которых он стоит, правда дебрями на Брянщине и не пахнет, но это предмет отдельного разговора и Бог даст в будущем я опубликую свои мысли на эту тему. Есть залежи костей и туш мамонтов, мясом которых ещё в конце двадцатого века в Сибири кормили собак. Всё это я более подробно рассмотрю в следующей части этой статьи.

А пока я обращаюсь ко всем читателям, которые потратили своё время и силы и дочитали статью до конца. Не оставайтесь ранодушны -- выссказывайте любые критические замечания, указывайте на неточности и ошибки в моих рассуждениях. Задавайте любые вопросы -- я отвечу на них обязательно!