Школьная энциклопедия. Второе начало термодинамики: определение, смысл, история



Добавить свою цену в базу

Комментарий

Термодинамика (греч. θέρμη – «тепло», δύναμις – «сила») – раздел физики, изучающий наиболее общие свойства макроскопических систем и способы передачи и превращения энергии в таких системах.

В термодинамике изучаются состояния и процессы, для описания которых можно ввести понятие температуры. Термодинамика (Т.) – это феноменологическая наука, опирающаяся на обобщения опытных фактов. Процессы, происходящие в термодинамических системах, описываются макроскопическими величинами (температура, давление, концентрации компонентов), которые вводятся для описания систем, состоящих из большого числа частиц, и не применимы к отдельным молекулам и атомам, в отличие, например, от величин, вводимых в механике или электродинамике.

Современная феноменологическая термодинамика является строгой теорией, развиваемой на основе нескольких постулатов. Однако связь этих постулатов со свойствами и законами взаимодействия частиц, из которых построены термодинамические системы, даётся статистической физикой. Статистическая физика позволяет выяснить также и границы применимости термодинамики.

Законы термодинамики носят общий характер и не зависят от конкретных деталей строения вещества на атомарном уровне. Поэтому термодинамика успешно применяется в широком круге вопросов науки и техники, таких как энергетика, теплотехника, фазовые переходы, химические реакции, явления переноса и даже чёрные дыры. Термодинамика имеет важное значение для самых разных областей физики и химии, химической технологии, аэрокосмической техники, машиностроения, клеточной биологии, биомедицинской инженерии, материаловедения и находит своё применение даже в таких областях, как экономика.

Важные годы в истории термодинамики

  • Зарождение термодинамики как науки связано с именем Г. Галилея (G. Galilei), корый ввёл понятие температуры и сконструировал первый прибор, реагирующий на изменения температуры окружающей среды (1597).
  • Вскоре Г. Д. Фаренгейт (G. D. Fahrenheit, 1714), Р. Реомюр (R. Reaumur, 1730} и А. Цельсий (A. Celsius, 1742) создали температурные шкалы в соответствии с этим принципом.
  • Дж.Блэк (J. Black) в 1757 году уже ввёл понятия скрытой теплоты плавления и теплоемкости (1770). А Вильке (J. Wilcke, 1772) ввёл определение калории как количества тепла, необходимого для нагревания 1 г воды на 1 °С.
  • Лавуазье (A. Lavoisier) и Лаплас (P. Laplace) в 1780 сконструировали калориметр (см. Калориметрия) и впервые экспериментально определили уд. теплоёмкости ряда веществ.
  • В 1824 С. Карно (N. L, S. Carnot) опубликовал работу, посвящённую исследованию принципов работы тепловых двигателей.
  • Б. Клапейрон (В. Clapeyron) ввёл графическое представление термодинамических процессов и развил метод бесконечно малых циклов (1834).
  • Г. Хельмгольц (G. Helmholtz) отметил универсальный характер закона сохранения энергии (1847). Впоследствии Р. Клаузиус (R. Clausius) и У. Томсон (Кельвин; W. Thomson) систематически развили теоретический аппарат термодинамики, в основу которого положены первое начало термодинамики и второе начало термодинамики.
  • Развитие 2-го начала привело Клаузиуса к определению энтропии (1854) и формулировке закона возрастания энтропии (1865).
  • Начиная с работ Дж. У. Гиббса (J. W. Gibbs, 1873), предложившего метод термодинамических потенциалов, развивается теория термодинамического равновесия.
  • Во 2-й пол. 19 в. проводились исследования реальных газов. Особую роль сыграли эксперименты Т. Эндрюса (Т. Andrews), который впервые обнаружил критическую точку системы жидкость-пар (1861), её существование предсказал Д. И. Менделеев (1860).
  • К концу 19 в. были достигнуты большие успехи в получении низких температур, в результате чего были ожижены О2, N2 и Н2.
  • В 1902 Гиббс опубликовал работу, в которой все основные термодинамические соотношения были получены в рамках статистической физики.
  • Связь между кинетич. свойствами тела и его термодинамич. характеристиками была установлена Л. Онсагером (L. Onsager, 1931).
  • В 20 в. интенсивно исследовали термодинамику твёрдых тел, а также квантовых жидкостей и жидких кристаллов, в которых имеют место многообразные фазовые переходы.
  • Л. Д. Ландау (1935-37) развил общую теорию фазовых переходов, основанную на концепции спонтанного нарушения симметрии.

Разделы термодинамики

Современную феноменологическую термодинамику принято делить на равновесную (или классическую) термодинамику, изучающую равновесные термодинамические системы и процессы в таких системах, и неравновесную термодинамику, изучающую неравновесные процессы в системах, в которых отклонение от термодинамического равновесия относительно невелико и ещё допускает термодинамическое описание.

Равновесная (или классическая) термодинамика

В равновесной термодинамике вводятся такие переменные, как внутренняя энергия, температура, энтропия, химический потенциал. Все они носят название термодинамических параметров (величин). Классическая термодинамика изучает связи термодинамических параметров между собой и с физическими величинами, вводимыми в рассмотрение в других разделах физики, например, с гравитационным или электромагнитным полем, действующим на систему. Химические реакции и фазовые переходы также входят в предмет изучения классической термодинамики. Однако изучение термодинамических систем, в которых существенную роль играют химические превращения, составляет предмет химической термодинамики, а техническими приложениями занимается теплотехника.

Классическая термодинамика включает в себя следующие разделы:

  • начала термодинамики (иногда также называемые законами или аксиомами)
  • уравнения состояния и свойства простых термодинамических систем (идеальный газ, реальный газ, диэлектрики и магнетики и т. д.)
  • равновесные процессы с простыми системами, термодинамические циклы
  • неравновесные процессы и закон неубывания энтропии
  • термодинамические фазы и фазовые переходы

Кроме этого, современная термодинамика включает также следующие направления:

  • строгая математическая формулировка термодинамики на основе выпуклого анализа
  • неэкстенсивная термодинамика

В системах, не находящихся в состоянии термодинамического равновесия, например, в движущемся газе, может применяться приближение локального равновесия, в котором считается, что соотношения равновесной термодинамики выполняются локально в каждой точке системы.

Неравновесная термодинамика

В неравновесной термодинамике переменные рассматриваются как локальные не только в пространстве, но и во времени, то есть в её формулы время может входить в явном виде. Отметим, что посвящённая вопросам теплопроводности классическая работа Фурье «Аналитическая теория тепла» (1822) опередила не только появление неравновесной термодинамики, но и работу Карно «Размышления о движущей силе огня и о машинах, способных развивать эту силу» (1824), которую принято считать точкой отсчёта в истории классической термодинамики.

Основные понятия термодинамики

Термодинамическая система – тело или группа тел, находящихся во взаимодействии, мысленно или реально обособленные от окружающей среды.

Гомогенная система – система, внутри которой нет поверхностей, разделяющих отличающиеся по свойствам части системы (фазы).

Гетерогенная система – система, внутри которой присутствуют поверхности, разделяющие отличающиеся по свойствам части системы.

Фаза – совокупность гомогенных частей гетерогенной системы, одинаковых по физическим и химическим свойствам, отделённая от других частей системы видимыми поверхностями раздела.

Изолированная система – система, которая не обменивается с окружающей средой ни веществом, ни энергией.

Закрытая система – система, которая обменивается с окружающей средой энергией, но не обменивается веществом.

Открытая система – система, которая обменивается с окружающей средой и веществом, и энергией.

Совокупность всех физических и химических свойств системы характеризует её термодинамическое состояние . Все величины, характеризующие какое-либо макроскопическое свойство рассматриваемой системы – параметры состояния . Опытным путем установлено, что для однозначной характеристики данной системы необходимо использовать некоторое число параметров, называемых независимыми ; все остальные параметры рассматриваются как функции независимых параметров. В качестве независимых параметров состояния обычно выбирают параметры, поддающиеся непосредственному измерению, например температуру, давление, концентрацию и т.д. Всякое изменение термодинамического состояния системы (изменения хотя бы одного параметра состояния) есть термодинамический процесс .

Обратимый процесс – процесс, допускающий возможность возвращения системы в исходное состояние без того, чтобы в окружающей среде остались какие-либо изменения.

Равновесный процесс – процесс, при котором система проходит через непрерывный ряд равновесных состояний.

Энергия – мера способности системы совершать работу; общая качественная мера движения и взаимодействия материи. Энергия является неотъемлемым свойством материи. Различают потенциальную энергию, обусловленную положением тела в поле некоторых сил, и кинетическую энергию, обусловленную изменением положения тела в пространстве.

Внутренняя энергия системы – сумма кинетической и потенциальной энергии всех частиц, составляющих систему. Можно также определить внутреннюю энергию системы как её полную энергию за вычетом кинетической и потенциальной энергии системы как целого.

Формы перехода энергии

Формы перехода энергии от одной системы к другой могут быть разбиты на две группы.

  1. В первую группу входит только одна форма перехода движения путем хаотических столкновений молекул двух соприкасающихся тел, т.е. путём теплопроводности (и одновременно путём излучения). Мерой передаваемого таким способом движения является теплота. Теплота есть форма передачи энергии путём неупорядоченного движения молекул.
  2. Во вторую группу включаются различные формы перехода движения, общей чертой которых является перемещение масс, охватывающих очень большие числа молекул (т.е. макроскопических масс), под действием каких-либо сил. Таковы поднятие тел в поле тяготения, переход некоторого количества электричества от большего электростатического потенциала к меньшему, расширение газа, находящегося под давлением и др. Общей мерой передаваемого такими способами движения является работа – форма передачи энергии путём упорядоченного движения частиц.

Теплота и работа характеризуют качественно и количественно две различные формы передачи движения от данной части материального мира к другой. Теплота и работа не могут содержаться в теле. Теплота и работа возникают только тогда, когда возникает процесс, и характеризуют только процесс. В статических условиях теплота и работа не существуют. Различие между теплотой и работой, принимаемое термодинамикой как исходное положение, и противопоставление теплоты работе имеет смысл только для тел, состоящих из множества молекул, т.к. для одной молекулы или для совокупности немногих молекул понятия теплоты и работы теряют смысл. Поэтому термодинамика рассматривает лишь тела, состоящие из большого числа молекул, т.е. так называемые макроскопические системы.

Три начала термодинамики

Начала термодинамики – совокупность постулатов, лежащих в основе термодинамики. Эти положения были установлены в результате научных исследований и были доказаны экспериментально. В качестве постулатов они принимаются для того, чтобы термодинамику можно было построить аксиоматически.

Необходимость начал термодинамики связана с тем, что термодинамика описывает макроскопические параметры систем без конкретных предположений относительно их микроскопического устройства. Вопросами внутреннего устройства занимается статистическая физика.

Начала термодинамики независимы, то есть ни одно из них не может быть выведено из других начал. Аналогами трех законов Ньютона в механике, являются три начала в термодинамике, которые связывают понятия «тепло» и «работа»:

  • Нулевое начало термодинамики говорит о термодинамическом равновесии.
  • Первое начало термодинамики – о сохранении энергии.
  • Второе начало термодинамики – о тепловых потоках.
  • Третье начало термодинамики – о недостижимости абсолютного нуля.

Общее (нулевое) начало термодинамики

Общее (нулевое) начало термодинамики гласит, что два тела находятся в состоянии теплового равновесия, если они могут передавать друг другу теплоту, но этого не происходит.

Нетрудно догадаться, что два тела не передают друг другу теплоту в том случае, если их температуры равны. Например, если измерить температуру человеческого тела при помощи термометра (в конце измерения температура человека и температура градусника будут равны), а затем, этим же термометром измерить температуру воды в ванной, и при этом окажется, что обе температуры совпадают (наблюдается тепловое равновесие человека с термометром и термометра с водой), можно говорить о том, что человек находится в тепловом равновесии с водой в ванной.

Из сказанного выше, можно сформулировать нулевое начало термодинамики следующим образом: два тела, находящиеся в тепловом равновесии с третьим, также находятся в тепловом равновесии между собой.

С физической точки зрения нулевое начало термодинамики устанавливает точку отсчета, поскольку, между двумя телами, которые имеют одинаковую температуру, тепловой поток отсутствует. Другими словами, можно сказать, что температура есть не что иное, как индикатор теплового равновесия.

Первое начало термодинамики

Первое начало термодинамики есть закон сохранения тепловой энергии, утверждающий, что энергия никуда не девается бесследно.

Система может либо поглощать, либо выделять тепловую энергию Q, при этом система выполняет над окружающими телами работу W (или окружающие тела выполняют работу над системой), при этом внутренняя энергия системы, которая имела начальное значение Uнач, будет равна Uкон:

Uкон-Uнач = ΔU = Q-W

Тепловая энергия, работа и внутренняя энергия определяют общую энергию системы, которая является постоянной величиной. Если системе передать (забрать) некое кол-во тепловой энергии Q, при отсутствии работы кол-во внутренней энергии системы U, увеличится (уменьшится) на Q.

Второе начало термодинамики

Второе начало термодинамик гласит, что тепловая энергия может переходить только в одном направлении – от тела с более высокой температурой, к телу, с более низкой температурой, но не наоборот.

Третье начало термодинамики

Третье начало термодинамики гласит, что любой процесс, состоящий из конечного числа этапов, не позволит достичь температуры абсолютного нуля (хотя к нему можно существенно приблизиться).

Второе начало термодинамики (второй закон термодинамики) устанавливает существование энтропии как функции состояния термодинамической системы и вводит понятие абсолютной термодинамической температуры , то есть «второе начало представляет собой закон об энтропии» и её свойствах . В изолированной системе энтропия остаётся либо неизменной, либо возрастает (в неравновесных процессах ), достигая максимума при достижении термодинамического равновесия (закон возрастания энтропии ) . Встречающиеся в литературе различные формулировки второго начала термодинамики представляют собой частные выражения общего закона возрастания энтропии .

Второе начало термодинамики позволяет построить рациональную температурную шкалу , не зависящую от произвола в выборе термометрического свойства и способа его измерения .

Вместе первое и второе начала составляют основу феноменологической термодинамики , которую можно рассматривать как развитую систему следствий этих двух начал. При этом из всех допускаемых первым началом процессов в термодинамической системе второе начало позволяет выделить фактически возможные и установить направление протекания самопроизвольных процессов, а также критерии равновесия в термодинамической системах

Энциклопедичный YouTube

    1 / 5

    ✪ Основы теплотехники. Второй закон термодинамики. Энтропия. Теорема Нернста.

    ✪ ПЕРВЫЙ И ВТОРОЙ ЗАКОНЫ ТЕРМОДИНАМИКИ

    ✪ Физика. Термодинамика: Первое начало термодинамики. Центр онлайн-обучения «Фоксфорд»

    ✪ Лекция 5. II закон термодинамики. Энтропия. Химическое равновесие

    ✪ Первый закон термодинамики. Внутренняя энергия

    Субтитры

История

Второе начало термодинамики возникло как рабочая теория тепловых двигателей, которая устанавливает условия, при которых превращение тепла в работу достигает максимального эффекта. Анализ второго начала термодинамики показывает, что малая величина этого эффекта ─ коэффициента полезного действия (КПД) ─ обуславливается не техническим несовершенством тепловых двигателей, а особенностью теплоты как способа передачи энергии, которая накладывает ограничения на его величину. Впервые теоретические исследования работы тепловых двигателей были проведены французским инженером Сади Карно. Он пришёл к выводу, что КПД тепловых машин не зависит от термодинамического цикла и природы рабочего тела, а целиком определяется в зависимости от внешних источников ─ нагревателя и холодильника. Работа Карно была написана до открытия принципа эквивалентности теплоты и работы и всеобщего признания закона сохранения энергии. Свои выводы Карно основывал на двух противоречивых основаниях: теплородной теории, которая была вскоре отброшена, и гидравлической аналогии. Несколько позднее Р. Клаузиус и В. Томсон- Кельвин согласовали теорему Карно с законом сохранения энергии и заложили основу того, что сейчас составляет содержание второго начала термодинамики.

Для обоснования теоремы Карно и дальнейшего построения второго начала необходимо было ввести новый постулат.

Наиболее распространённые формулировки постулата второго начала термодинамики

Постулат Клаузиуса (1850 г.):

Теплота не может переходить самопроизвольно от более холодного тела к более тёплому .

Постулат Томсона-Кельвина (1852 г.) в формулировке М. Планка:

Невозможно построить периодически действующую машину, вся деятельность которой сводится к поднятию тяжести и к охлаждению теплового резервуара .

Указание на периодичность действия машины является существенным, так как возможен некруговой процесс , единственным результатом которого было бы получение работы за счёт внутренней энергии, полученной от теплового резервуара. Этот процесс не противоречит постулату Томсона – Кельвина, так как процесс некруговой и, следовательно, машина не является периодически действующей. По существу постулат Томсона говорит о невозможности создания вечного двигателя второго рода, который способен непрерывно совершать работу, отбирая тепло от неисчерпаемого источника. Иными словами, невозможно осуществить тепловой двигатель, единственным результатом работы которого было бы превращение тепла в работу без компенсации, то есть без того, чтобы часть тепла была передана другим телам и, таким образом, безвозвратно утрачена для получения работы.

Несложно доказать, что постулаты Клаузиуса и Томсона эквивалентны. Доказательство идет от противного.

Допустим, что не выполняется постулат Клаузиуса. Рассмотрим тепловую машину , рабочее вещество которой за цикл получило от горячего источника количество тепла Q 1 {\displaystyle Q_{1}} , отдало холодному источнику количество тепла и произвело при этом работу . Поскольку, по допущению, постулат Клаузиуса не верен, то можно тепло Q 2 {\displaystyle Q_{2}} вернуть горячему источнику без изменений в окружающей среде. В результате состояние холодного источника не изменилось, горячий источник отдал рабочему веществу количество тепла Q 2 − Q 1 {\displaystyle Q_{2}-Q_{1}} и за счёт этого тепла машина совершила работу A = Q 1 − Q 2 {\displaystyle A=Q_{1}-Q_{2}} , что противоречит постулату Томсона.

Постулаты Клаузиуса и Томсона-Кельвина формулируются как отрицание возможности какого - либо явления, т.е. как постулаты запрещения. Постулаты запрещения совершенно не соответствуют содержанию и современным требованиям, предъявляемым к обоснованию принципа существования энтропии и не вполне удовлетворяют задаче обоснования принципа возрастания энтропии, так как должны содержать указание об определённой направленности наблюдаемых в природе необратимых явлений, а не отрицание возможности противоположного течения их.

  • Постулат Планка (1926 г.):

Образование тепла путем трения необратимо.

В постулате Планка, наряду с отрицанием возможности полного превращения тепла в работу, содержится утверждение о возможности полного превращения работы в тепло.

Современная формулировка второго начала классической термодинамики.

Второе начало термодинамики это утверждение о существовании у всякой равновесной системы некоторой функции состояния ─ энтропии и неубывании её при любых процессах в изолированных и адиабатно изолированных системах.

Иными словами, второе начало термодинамики представляет собой объединённый принцип существования и возрастания энтропии .

Принцип существования энтропии есть утверждение второго начала классической термодинамики о существовании некоторой функции состояния тел (термодинамических систем) ─ энтропии S {\displaystyle S} , дифференциал которой является полным дифференциалом d S {\displaystyle dS} , и определяется в обратимых процессах как отношение подведённого извне элементарного количества тепла δ Q обр ∗ {\displaystyle \delta Q_{\text{обр}}^{*}} к абсолютной температуре тела (системы) T {\displaystyle T} :

D S обр = δ Q обр ∗ T {\displaystyle dS_{\text{обр}}={\frac {\delta Q_{\text{обр}}^{*}}{T}}}

Принцип возрастания энтропии есть утверждение второго начала классической термодинамики о неизменном возрастании энтропии изолированных систем во всех реальных процессах изменения их состояния. (В обратимых процессах изменения состояния изолированных систем энтропия их не изменяется).

D S изолир ≥ 0 {\displaystyle dS_{\text{изолир}}\geq 0}

Математическое выражение второго начала классической термодинамики:

D S = δ Q ∗ T ≥ 0 {\displaystyle dS={\frac {\delta Q^{*}}{T}}\geq 0}

Статистическое определение энтропии

В статистической физике энтропия (S) {\displaystyle (S)} термодинамической системы рассматривается как функция вероятности (W) {\displaystyle (W)} её состояния («принцип Больцмана»).

S = k l n W , {\displaystyle S=klnW,}

Где k {\displaystyle k} ─ постоянная Больцмана, W {\displaystyle W} ─ термодинамическая вероятность состояния, которая определяется количеством микросостояний реализующих данное макросостояние.

Методы обоснования второго начала термодинамики.

Метод Р. Клаузиуса

В своём обосновании второго начала Клаузиус исследует круговые процессы двух механически сопряжённых обратимых тепловых машин, использующих в качестве рабочего тела идеальный газ, доказывает теорему Карно выражение КПД обратимого цикла Карно) для идеальных газов η = 1 − T 2 T 1 {\displaystyle \eta =1-{\frac {T_{2}}{T_{1}}}} , а затем формулирует теорему, называемую интегралом Клаузиуса:

∮ ⁡ δ Q T = 0 {\displaystyle \oint {\frac {\delta Q}{T}}=0}

Из равенства нулю кругового интеграла следует, что его подынтегральное выражение является полным дифференциалом некоторой функции состояния ─ S {\displaystyle S} , а нижеследующее равенство представляет собой математическое выражение принципа существования энтропии для обратимых процессов:

D S = δ Q T {\displaystyle dS={\frac {\delta Q}{T}}}

Далее Клаузиус доказывает неравенство КПД обратимых и необратимых машин и, в конечном счёте, приходит к выводу о неубывании энтропии изолированных систем: В отношении построения второго начала термодинамики по методу Клаузиуса было высказано немало возражений и замечаний. Вот некоторые из них:

1. Построение принципа существования энтропии Клаузиус начинает с выражения КПД обратимого цикла Карно для идеальных газов , а затем распространяет его на все обратимые циклы. Таким образом Клаузиус неявно постулирует возможность существования идеальных газов, подчиняющихся уравнению Клапейрона P v = R T {\displaystyle Pv=RT} и закону Джоуля u = u (t) {\displaystyle u=u(t)} .

2. Обоснование теоремы Карно является ошибочным, так как в схему доказательства внесено лишнее условие ─ более совершенной обратимой машине неизменно приписывается роль теплового двигателя. Однако, если принять, что более совершенной машиной является холодильная, а вместо постулата Клаузиуса принять противоположное утверждение, что тепло не может самопроизвольно переходить от более нагретого тела к более холодному, то теорема Карно тем же самым способом также будет доказана. Таким образом напрашивается вывод, что принцип существования энтропии не зависит от направления протекания самопроизвольных процессов, а постулат необратимости не может быть основанием для доказательства существования энтропии.

3. Постулат Клаузиуса как постулат запрещения не является явным утверждением, характеризующим направление протекания наблюдаемых в природе необратимых явлений, в частности, утверждением о самопроизвольном переходе тепла от более нагретого тела к более холодному, так как выражение ─ не может переходить неэквивалентно выражению переходит .

4. Выводы статфизики о вероятностном характере принципа необратимости и открытие в 1951г. необычных (квантовых) систем с отрицательными абсолютными температурами, в которых самопроизвольный теплообмен имеет противоположное направление, теплота может полностью превращается в работу, а работа не может полностью (без компенсации) перейти в тепло, пошатнули базовые постулаты Клаузиуса, Томсона - Кельвина и Планка, полностью отвергнув одни, и наложив серьёзные ограничения на другие.

Метод Шиллера – Каратеодори

В XX веке благодаря работам Н. Шиллера, К. Каратеодори, Т. Афанасьевой – Эренфест, А. Гухмана и Н.И. Белоконя появилось новое аксиоматическое направление в обосновании второго начала термодинамики. Выяснилось, что принцип существования энтропии может быть обоснован независимо от направления наблюдаемых в природе реальных процессов, т.е. от принципа необратимости, и для определения абсолютной температуры и энтропии не требуется, как заметил Гельмгольц, ни рассмотрения круговых процессов, ни допущения о существовании идеальных газов. В 1909 г. Константин Каратеодори - крупный немецкий математик - опубликовал работу, в которой обосновал принцип существования энтропии не в результате исследования состояний реальных термодинамических систем, а на основе математического рассмотрения выражений обратимого теплообмена как дифференциальных полиномов (форм Пфаффа). Еще ранее, на рубеже веков, к аналогичным построениям пришёл Н.Шиллер, но его работы остались незамеченными, пока на них в 1928 г. не обратила внимания Т. Афанасьева -Эренфест.

Постулат Каратеодори (постулат адиабатической недостижимости).

Вблизи каждого равновесного состояния системы возможны такие её состояния, которые не могут быть достигнуты при помощи обратимого адиабатического процесса.

Теорема Каратеодори утверждает, что если дифференциальный полином Пфаффа обладает тем свойством, что в произвольной близости некоторой точки существуют другие точки, недостижимые посредством последовательных перемещений по пути , то существуют интегрирующие делители этого полинома и уравнения ∑ X i d x i = 0 {\displaystyle \sum X_{i}dx_{i}=0} .

Критически к методу Каратеодори относился М. Планк. Постулат Каратеодори, по его мнению, не относится к числу наглядных и очевидных аксиом: «Содержащиеся в нём высказывание не является общеприменимым к естественным процессам... . Никто ещё и никогда не ставил опытов с целью достижения всех смежных состояний какого-либо определённого состояния адиабатическим путем». Системе Каратеодори Планк противопоставляет свою систему, основанную на постулате: «Образование теплоты посредством трения необратимо», которым по его мнению, исчерпывается содержание второго начала термодинамики. Метод Каратеодори, между тем, получил высокую оценку в работе Т. Афанасьевой -Эренфест «Необратимость, односторонность и второе начало термодинамики» (1928 г.). В своей замечательной статье Афанасьева - Эренфест пришла к ряду важнейших выводов, в частности:

1. Основное содержание второго начала состоит в том, что элементарное количество теплоты δ Q {\displaystyle \delta Q} , которым система обменивается в квазистическом процессе, может быть представлено в виде T d S {\displaystyle TdS} , где T = f (t) {\displaystyle T=f(t)} ─ универсальная функция температуры, называемая абсолютной температурой, а (S) {\displaystyle (S)} ─ функция параметров состояния системы, получившая название энтропии. Очевидно, выражение δ Q = T d S {\displaystyle \delta Q=TdS} имеет смысл принципа существования энтропии .

2. Принципиальное отличие неравновесных процессов от равновесных состоит в том, что в условиях неоднородности температурного поля возможен переход системы к состоянию с другой энтропией без обмена теплотой с окружающей средой. (Этот процесс позднее в трудах Н.И. Белоконя получил название "внутреннего теплообмена" или теплообмена рабочего тела.). Следствием неравновесности процесса в изолированной системе, является его односторонность.

3. Одностороннее изменение энтропии в равной степени мыслимо и как неуклонное её возрастание или как неуклонное убывание. Физические предпосылки – такие как адиабатическая недостижимость и необратимость реальных процессов не выражают никаких требований относительно преимущественного направления течения самопроизвольных процессов.

4. Для согласования полученных выводов с опытными данными для реальных процессов необходимо принять постулат, сфера действия которого определяется границами применимости этих данных. Таким постулатом является принцип возрастания энтропии .

А. Гухман, оценивая работу Каратеодори, считает, что она «отличается формальной логической строгостью и безупречностью в математическом отношении... Вместе с тем в стремлении к наибольшей общности Каратеодори придал своей системе настолько абстрактную и сложную форму, что она оказалась фактически недоступной для большинства физиков того времени». Относительно постулата адиабатической недостижимости Гухман замечает, что как физический принцип он не может быть положен в основу теории, имеющей универсальное значение, так как не обладает свойством самоочевидности. «Всё предельно ясно в отношении простой...системы...Но эта ясность полностью утрачивается в общем случае гетерогенной системы, усложнённой химическими превращениями и испытывающей воздействие внешних полей». Он также говорит и о том, насколько права была Афанасьева - Эренфест, настаивая на необходимости полного отделения проблемы существования энтропии, от всего, что связано с идеей необратимости реальных процессов». Относительно построения основ термодинамики Гухман полагает, что «самостоятельной отдельной проблемы существования энтропии нет. Вопрос сводится к распространению на случай термического взаимодействия круга представлений, разработанных на основе опыта изучения всех других энергетических взаимодействий, и завершающихся установлением единообразного по форме уравнения для элементарного количества воздействия d Q = P d x {\displaystyle dQ=Pdx} Эта экстраполяция подсказывается самим строем идей. Несомненно, имеются достаточные основания принять её в качестве весьма правдоподобной гипотезы и тем самым постулировать существование энтропии .

Н.И. Белоконь в своей монографии «Термодинамика» дал детальный анализ многочисленных попыток обоснования второго начала термодинамики как объединённого принципа существования и возрастания энтропии на основе одного лишь постулата необратимости. Он показал, что попытки такого обоснования не соответствуют современному уровню развития термодинамики и не могут быть оправданы, во - первых, потому, что вывод о существовании энтропии и абсолютной температуры не имеет никакого отношения к необратимости явлений природы (эти функции существуют независимо от возрастания или убывания энтропии изолированных систем), во - вторых, указание о направлении наблюдаемых необратимых явлений снижает уровень общности второго начала термодинамики и, в - третьих, использование постулата Томсона- Планка о невозможности полного превращения тепла в работу противоречит результатам исследований систем с отрицательной абсолютной температурой, в которых может быть осуществлено полное превращение тепла в работу, но невозможно полное превращение работы в тепло. Вслед за Т. Афанасьевой-Эренфест Н.И. Белоконь утверждает, что различие содержания, уровня общности и сферы применения принципов существования и возрастания энтропии совершенно очевидно:

1. Из принципа существования энтропии вытекает ряд важнейших дифференциальных уравнений термодинамики, широко используемых при изучении термодинамических процессов и физических свойств вещества, и его научное значение трудно переоценить.

2. Принцип возрастания энтропии изолированных систем есть утверждение о необратимом течении наблюдаемых в природе явлений. Этот принцип используется в суждениях о наиболее вероятном направлении течения физических процессов и химических реакций, и из него вытекают все неравенства термодинамики.

Относительно обоснования принципа существования энтропии по методу Шиллера ─ Каратеодори Белоконь отмечает, что в построениях принципа существования по этому методу совершенно обязательным является использование теоремы Каратеодори об условиях существования интегрирующих делителей дифференциальных полиномов δ Q = ∑ X i d x i = τ d Z , {\displaystyle \delta Q=\sum X_{i}dx_{i}=\tau dZ,} однако, необходимость использования этой теоремы «должна быть признана очень стеснительной, так как общая теория дифференциальных полиномов рассматриваемого типа (форм Пфаффа) представляет известные трудности и излагается лишь в специальных трудах по высшей математике.» В большинстве курсов термодинамики теорема Каратеодори даётся без доказательства, либо приводится доказательство в нестрогом, упрощённом виде. .

Анализируя построение принципа существования энтропии равновесных систем по схеме К. Каратеодори, Н.И. Белоконь обращает внимание на использовании совершенно необоснованного допущения о возможности одновременного включения температуры t {\displaystyle t} и ─ функции в состав независимых переменных состояния равновесной системы и приходит к выводу о том, что что постулат Каратеодори эквивалентен группе общих условий существования интегрирующих делителей дифференциальных полиномов ∑ X i d x i {\displaystyle \sum X_{i}dx_{i}} , но недостаточен для установления существования первичного интегрирующего делителя τ (t) = T {\displaystyle \tau (t)=T} , т. е. для обоснования принципа существования абсолютной температуры и энтропии . Далее он утверждает: «Совершенно очевидно, что при построении принципа существования абсолютной температуры и энтропии на основе теоремы Каратеодори должен быть использован такой постулат, который был бы эквивалентен теореме о несовместимости адиабаты и изотермы...". В этих корректиpованных построениях становится совершенно излишним постулат Каратеодори, так как этот постулат является частным следствием необходимой теоремы о несовместимости адиабаты и изотермы.»

Метод Н.И. Белоконя

В обосновании по методу Н.И. Белоконя второе начало термодинамики разделено на два принципа (закона):

1. Принцип существования абсолютной температуры и энтропии (второе начало термостатики ).

2. Принцип возрастания энтропии(второе начало термодинамики ).

Каждый из этих принципов получил обоснование на основании независимых постулатов.

  • Постулат второго начала термостатики (Белоконя).

Температура есть единственная функция состояния, определяющая направление самопроизвольного теплообмена, т.е. между телами и элементами тел, не находящимися в тепловом равновесии, невозможен одновременный самопроизвольный (по балансу) переход тепла в противоположных направлениях - от тел более нагретых к телам менее нагретым и обратно. .

Постулат второго начала термостатики является частным выражением причинной связи и однозначности законов природы . Например, если существует причина, в силу которой в данной системе тепло переходит от более нагретого тела к менее нагретому, то эта же причина будет препятствовать переходу тепла в противоположном направлении и наоборот. Этот постулат полностью симметричен в отношении направления необратимых явлений, так как не содержит никаких указаний о наблюдаемом направлении необратимых явлений в нашем мире ─ мире положительных абсолютных температур.

Следствия второго начала термостатики:

Следствие I. Невозможно одновременное (в рамках одной и той же пространственно- временной системы положительных или отрицательных абсолютных температур) осуществление полных превращений тепла в работу и работы в тепло.

Следствие II. (теорема несовместимости адиабаты и изотермы). На изотерме равновесной термодинамической системы, пересекающей две различные адиабаты той же системы, теплообмен не может быть равен нулю.

Следствие III (теорема теплового равновесия тел). В равновесных круговых процессах двух термически сопряженных тел (t I = t I I) {\displaystyle (t_{I}=t_{I}I)} , образующих адиабатически изолированную систему оба тела возвращаются на исходные адиабаты и в исходное состояние одновременно.

На основании следствий постулата второго начала термостатики Н.И. Белоконь предложил построение принципа существования абсолютной температуры и энтропии для обратимых и необратимых процессов δ Q = δ Q ∗ + Q ∗ ∗ T d S {\displaystyle \delta Q=\delta Q^{*}+Q^{**}TdS}

  • Постулат второго начала термодинамики (принципа возрастания энтропии).

Постулат второго начала термодинамики предлагается в форме утверждения, определяющего направление одного из характерных явлений в нашем мире положительных абсолютных температур:

Работа может быть непосредственно и полностью превращена и тепло путем трения или электронагрева.

Следствие I.Тепло не может быть полностью превращено в работу (принцип исключенного Perpetuum mobile II рода):

η < 1 {\displaystyle \eta <1}

.

Следствие II . КПД или холодопроизводительность любой необратимой тепловой машины (двигателя или холодильника,соответственно) при заданных температурах внешних источников всегда меньше КПД или холодопроизводительности обратимых машин работающих между теми же источниками.

Снижение КПД и холодопроизводительности реальных тепловых машин связано с нарушением равновесного течения процессов (неравновесный теплообмен из-за разнсти температур источников тепла и рабочего тела) и необратимого превращения работы в тепло (потери на трение и внутренние сопротивления).

Из этого следствия и следствия I второго начала термостатики непосредственно вытекает невозможность осуществления Perpetuum mobile I и II рода. На основе постулата второго начала термодинамики может быть обосновано математическое выражение второго начала классической термодинамики как объединённый принцип существования и возрастания энтропии:

D S ≥ δ Q ∗ T {\displaystyle dS\geq {\frac {\delta Q^{*}}{T}}}

Природным процессам свойственна направленность и необратимость, однако в большинстве законов, описанных в этой книге, это не находит отражения — по крайней мере, явного. Разбить яйца и сделать яичницу не сложно, воссоздать же сырые яйца из готовой яичницы — невозможно. Запах из открытого флакона духов наполняет комнату — однако обратно во флакон его не соберешь. И причина такой необратимости процессов, происходящих во Вселенной, кроется во втором начале термодинамики, который, при всей его кажущейся простоте, является одним из самых трудных и часто неверно понимаемых законов классической физики.

Прежде всего, у этого закона имеется как минимум три равноправные формулировки, предложенные в разные годы физиками разных поколений. Может показаться, что между ними нет ничего общего, однако все они логически эквивалентны между собой. Из любой формулировки второго начала математически выводятся две другие.

Начнем с первой формулировки, принадлежащей немецкому физику Рудольфу Клаузиусу (см. Уравнение Клапейрона—Клаузиуса). Вот простая и наглядная иллюстрация этой формулировки: берем из холодильника кубик льда и кладем его в раковину. По прошествии некоторого времени кубик льда растает, потому что теплота от более теплого тела (воздуха) передастся более холодному (кубику льда). С точки зрения закона сохранения энергии, нет причин для того, чтобы тепловая энергия передавалась именно в таком направлении: даже если бы лед становился всё холоднее, а воздух всё теплее, закон сохранения энергии всё равно бы выполнялся. Тот факт, что этого не происходит, как раз и свидетельствует об уже упоминавшейся направленности физических процессов.

Почему именно так взаимодействуют лед и воздух, мы можем легко объяснить, рассматривая это взаимодействие на молекулярном уровне. Из молекулярно-кинетической теории мы знаем, что температура отражает скорость движения молекул тела — чем быстрее они движутся,тем выше температура тела. Значит, молекулы воздуха движутся быстрее молекул воды в кубике льда. При соударении молекулы воздуха с молекулой воды на поверхности льда, как подсказывает нам опыт, быстрые молекулы, в среднем, замедляются, а медленные ускоряются. Таким образом, молекулы воды начинают двигаться всё быстрее, или, что то же самое, температура льда повышается. Именно это мы имеем в виду, когда говорим, что тепло передается от воздуха ко льду. И в рамках этой модели первая формулировка второго начала термодинамики логически вытекает из поведения молекул.

При перемещении какого-либо тела на какое-либо расстояние под действием определенной силы совершается работа, и различные формы энергии как раз и выражают способность системы произвести определенную работу. Поскольку теплота, отражающая кинетическую энергию молекул, представляет собой одну из форм энергии, она тоже может быть преобразована в работу. Но опять мы имеем дело с направленным процессом. Перевести работу в теплоту можно со стопроцентной эффективностью — вы делаете это каждый раз, когда нажимаете на педаль тормоза в своем автомобиле: вся кинетическая энергия движения вашего автомобиля плюс затраченная вами энергия силы нажатия на педаль через работу вашей ноги и гидравлической системы тормозов полностью превращается в теплоту, выделяющуюся в процессе трения колодок о тормозные диски. Вторая формулировка второго начала термодинамики утверждает, что обратный процесс невозможен. Сколько ни пытайтесь всю тепловую энергию превратить в работу — тепловые потери в окружающую среду неизбежны.

Проиллюстрировать вторую формулировку в действии несложно. Представьте себе цилиндр двигателя внутреннего сгорания вашего автомобиля. В него впрыскивается высокооктановая топливная смесь, которая сжимается поршнем до высокого давления, после чего она воспламеняется в малом зазоре между головкой блока цилиндров и плотно пригнанным к стенкам цилиндра свободно ходящим поршнем. При взрывном сгорании смеси выделяется значительное количество теплоты в виде раскаленных и расширяющихся продуктов сгорания, давление которых толкает поршень вниз. В идеальном мире мы могли бы достичь КПД использования выделившейся тепловой энергии на уровне 100%, полностью переведя ее в механическую работу поршня.

В реальном мире никто и никогда не соберет такого идеального двигателя по двум причинам. Во-первых, стенки цилиндра неизбежно нагреваются в результате горения рабочей смеси, часть теплоты теряется вхолостую и отводится через систему охлаждения в окружающую среду. Во-вторых, часть работы неизбежно уходит на преодоление силы трения, в результате чего, опять же, нагреваются стенки цилиндров — еще одна тепловая потеря (даже при самом хорошем моторном масле). В-третьих, цилиндру нужно вернуться к исходной точке сжатия, а это также работа по преодолению трения с выделением теплоты, затраченная вхолостую. В итоге мы имеем то, что имеем, а именно: самые совершенные тепловые двигатели работают с КПД не более 50%.

Такая трактовка второго начала термодинамики заложена в принципе Карно , который назван так в честь французского военного инженера Сади Карно. Она сформулирована раньше других и оказала огромное влияние на развитие инженерной техники на многие поколения вперед, хотя и носит прикладной характер. Огромное значение она приобретает с точки зрения современной энергетики — важнейшей отрасли любой национальной экономики. Сегодня, сталкиваясь с дефицитом топливных ресурсов, человечество, тем не менее, вынуждено мириться с тем, что КПД, например, ТЭЦ, работающих на угле или мазуте, не превышает 30-35% — то есть, две трети топлива сжигается впустую, точнее расходуется на подогрев атмосферы — и это перед лицом угрозы глобального потепления. Вот почему современные ТЭЦ легко узнать по колоссальным башням-градирням — именно в них остужается вода, охлаждающая турбины электрогенераторов, и избытки тепловой энергии выбрасываются в окружающую среду. И столь низкая эффективность использования ресурсов — не вина, а беда современных инженеров-конструкторов: они и без того выжимают близко к максимуму того, что позволяет цикл Карно. Те же, кто заявляет, что нашел решение, позволяющее резко сократить тепловые потери энергии (например, сконструировал вечный двигатель), утверждают тем самым, что они перехитрили второе начало термодинамики. С тем же успехом они могли бы утверждать, что знают, как сделать так, чтобы кубик льда в раковине не таял при комнатной температуре, а, наоборот, еще больше охлаждался, нагревая при этом воздух.

Третья формулировка второго начала термодинамики, приписываемая обычно австрийскому физику Людвигу Больцману (см. Постоянная Больцмана), пожалуй, наиболее известна. Энтропия — это показатель неупорядоченности системы. Чем выше энтропия — тем хаотичнее движение материальных частиц, составляющих систему. Больцману удалось разработать формулу для прямого математического описания степени упорядоченности системы. Давайте посмотрим, как она работает, на примере воды. В жидком состоянии вода представляет собой довольно неупорядоченную структуру, поскольку молекулы свободно перемещаются друг относительно друга, и пространственная ориентация у них может быть произвольной. Другое дело лед — в нем молекулы воды упорядочены, будучи включенными в кристаллическую решетку. Формулировка второго начала термодинамики Больцмана, условно говоря, гласит, что лед, растаяв и превратившись в воду (процесс, сопровождающийся снижением степени упорядоченности и повышением энтропии) сам по себе никогда из воды не возродится. И снова мы видим пример необратимого природного физического явления.

Тут важно понимать, что речь не идет о том, что в этой формулировке второе начало термодинамики провозглашает, что энтропия не может снижаться нигде и никогда. В конце концов, растопленный лед можно поместить обратно в морозильную камеру и снова заморозить. Смысл в том, что энтропия не может уменьшаться в замкнутых системах — то есть, в системах, не получающих внешней энергетической подпитки. Работающий холодильник не является изолированной замкнутой системой, поскольку он подключен к сети электропитания и получает энергию извне — в конечном счете, от электростанций, ее производящих. В данном случае замкнутой системой будет холодильник, плюс проводка, плюс местная трансформаторная подстанция, плюс единая сеть энергоснабжения, плюс электростанции. И поскольку рост энтропии в результате беспорядочного испарения из градирен электростанции многократно превышает снижение энтропии за счет кристаллизации льда в вашем холодильнике, второе начало термодинамики ни в коей мере не нарушается.

А это, я полагаю, приводит еще к одной формулировке второго начала: Холодильник не работает, если он не включен в розетку.

Как известно, первое начало термодинамики отображает закон сохранения энергии в термодинамических процессах, однако оно не дает представление о направлении протекания процессов. Помимо этого можно придумать множество термодинамических процессов, которые не будут противоречить первому началу, но в реальной действительности таких процессов не существует. Существование второго закона (начала) термодинамики вызвано необходимостью установить возможность того или иного процесса. Этот закон определяет направление течения термодинамических процессов. При формулировке второго начала термодинамики используют понятия энтропии и неравенство Клаузиуса. В таком случае второй закон термодинамики формулируется как закон роста энтропии замкнутой системы, если процесс является необратимым.

Формулировки второго закона термодинамики

Если в замкнутой системе происходит процесс, то энтропия этой системы не убывает. В виде формулы второй закон термодинамики записывают как:

где S - энтропия; L - путь по которому система переходит из одного состояния в другое.

В данной формулировке второго начала термодинамики следует обратить внимание на то, что рассматриваемая система должна быть замкнутой. В незамкнутой системе энтропия может вести себя как угодно (и убывать, и возрастать, и оставаться постоянной). Заметим, что энтропия не изменяется в замкнутой системе при обратимых процессах.

Рост энтропии в замкнутой системе при необратимых процессах — это переход термодинамической системы из состояний с меньшей вероятностью в состояния с большей вероятностью. Известная формула Больцмана дает статистическое толкование второго закона термодинамики:

где k - постоянная Больцмана; w - термодинамическая вероятность (количество способов при помощи которых, может реализовываться рассматриваемое макросостояние системы). Так, второй закон термодинамики является статистическим законом, который связан с описанием закономерностей теплового (хаотического) движения молекул, которые составляют термодинамическую систему.

Другие формулировки второго закона термодинамики

Существует ряд других формулировок второго закона термодинамики:

1) Формулировка Кельвина: Невозможно создать круговой процесс, результатом которого станет исключительно превращение теплоты, которое получено от нагревателя, в работу. Из данной формулировки второго закона термодинамики делают вывод о невозможности создания вечного двигателя второго рода. Это означает, что периодически действующая тепловая машина должна иметь нагреватель, рабочее тело и холодильник. При этом КПД идеальной тепловой машины не может быть больше, чем КПД цикла Карно:

где - температура нагревателя; — температура холодильника; ( title="Rendered by QuickLaTeX.com" height="15" width="65" style="vertical-align: -3px;">).

2) Формулировка Клаузиуса: Невозможно создать круговой процесс в результате которого будет происходить исключительно передача тепла от тела с меньшей температурой к телу с большей температурой.

Второй закон термодинамики отмечает существенное различие между двумя формами передачи энергии (работой и теплотой). Из этого закона следует, переход упорядоченного перемещение тела, как единого целого в хаотическое движение молекул тела и внешней среды - является необратимым процессом. При этом упорядоченное движение может переходить в хаотическое без дополнительных (компенсационных) процессов. Тогда как переход неупорядоченного движения в упорядоченное должен сопровождаться компенсирующим процессом.

Примеры решения задач

ПРИМЕР 1

Задание В чем состоит суть проблемы «Тепловой смерти Вселенной»? Почему эта проблема является несостоятельной?
Решение Данная проблема была сформулирована в XIX веке. Если считать Вселенную замкнутой системой и пытаться применить к ней второй закон термодинамики, то по гипотезе Клаузиуса энтропия Вселенной достигнет некоторого максимума. То есть через некоторое время все формы движения станут тепловым движением. Вся теплота от тел с более высокой температурой перейдет к телам, имеющим более низкую температуру, то есть температуры всех тел Вселенной станут равны. Вселенная придет в состояние теплового равновесия, все процессы прекратятся — это называют тепловой смертью Вселенной. Ошибка данного положения о тепловой смерти Вселенной заключена в том, что второй закон термодинамики неприменим к незамкнутым системам, а Вселенную считать замкнутой не следует. Так как она является безграничной и состоит в бесконечном развитии.

ПРИМЕР 2

Задание Чему равно КПД цикла, который представлен на рис.1? Считайте, что в процессе участвует идеальный газ (число степеней свободы равно i) и его объем изменяется в n раз.

Решение Коэффициент полезного действия цикла, который представлен на рис.1 найдем как:

где — количество теплоты, которое рабочее тело получает от нагревателя в представленном цикле. В адиабатных процессах подвода и отвода тепла нет, получается, что тепло подводится только в процессе 1-2. — количество теплоты, которое отводится от газа в процессе 3-4.

Используя первое начало термодинамики, найдем количество тепла, полученное газом в процессе 1-2, который является изохорным:

так как изменения объема в данном процессе нет. Изменение внутренней энергии газа определим как:

По аналогии для изохорного процесса, в котором теплота отводится, имеем:

Подставим полученный результат (2.2 - 2.5) в выражение (2.1):

Используем уравнение адиабаты для нахождения разностей температур, и рассматривая рис.1. Для процесса 2-3 запишем:

Существует несколько формулировок второго закона термодинамики, авторами которых являются немецкий физик, механик и математик Рудольф Клаузиус и британский физик и механик Уильям Томсон, лорд Кельвин. Внешне они различаются, но суть их одинакова.

Постулат Клаузиуса

Рудольф Юлиус Эммануэль Клаузиус

Второй закон термодинамики, как и первый, также выведен опытным путём. Автором первой формулировки второго закона термодинамики считается немецкий физик, механик и математик Рудольф Клаузиус.

«Теплота сама собой не может переходить от тела холодного к телу горячему ». Это утверждение, которое Клазиус назвал «тепловой аксиомой », было сформулировано в 1850 г. в работе «О движущей силе теплоты и о законах, которые можно отсюда получить для теории теплоты». «Само собой теплота передаётся лишь от тела с более высокой температурой к телу с меньшей температурой. В обратном направлении самопроизвольная передача теплоты невозможна». Таков смысл постулата Клаузиуса , определяющего суть второго закона термодинамики.

Обратимые и необратимые процессы

Первый закон термодинамики показывает количественную связь между теплотой, полученной системой, изменением её внутренней энергии и работой, произведённой системой над внешними телами. Но он не рассматривает направление передачи теплоты. И можно предположить, что теплота может передаваться как от горячего тела к холодному, так и наоборот. Между тем, в действительности это не так. Если два тела находятся в контакте, то теплота всегда передаётся от более нагретого тела к менее нагретому. Причём этот процесс происходит сам по себе. При этом во внешних телах, окружающих контактирующие тела, никаких изменений не возникает. Такой процесс, который происходит без совершения работы извне (без вмешательства внешних сил), называется самопроизвольным . Он может быть обратимым и необратимым .

Самопроизвольно остывая, горячее тело передаёт свою теплоту окружающим его более холодным телам. И никогда само собой холодное тело не станет горячим. Термодинамическая система в этом случае не может возвратиться в первоначальное состояние. Такой процесс называется необратимым . Необратимые процессы протекают только в одном направлении. Практически все самопроизвольные процессы в природе необратимы, как необратимо время.

Обратимым называется термодинамический процесс, при котором система переходит из одного состояния в другое, но может вернуться в исходное состояние, пройдя в обратной последовательности через промежуточные равновесные состояния. При этом все параметры системы восстанавливаются до первоначального состояния. Обратимые процессы дают наибольшую работу. Однако в реальности их нельзя осуществить, к ним можно только приблизиться, так как протекают они бесконечно медленно. На практике такой процесс состоит из непрерывных последовательных состояний равновесия и называется квазистатическим . Все квазистатические процессы являются обратимыми.

Постулат Томсона (Кельвина)

Уильм Томсон, лорд Кельвин

Важнейшая задача термодинамики - получение с помощью тепла наибольшего количества работы. Работа легко превращается в теплоту полностью безо всякой компенсации, например, с помощью трения. Но обратный процесс превращения теплоты в работу происходит не полностью и невозможен без получения дополнительной энергии извне.

Нужно сказать, что передача теплоты от более холодного тела к более тёплому возможна. Такой процесс происходит, например, в нашем домашнем холодильнике. Но он не может быть самопроизвольным. Для того чтобы он протекал, необходимо наличие компрессора, который будет такой воздух перегонять. То есть, для обратного процесса (охлаждения) требуется подвод энергии извне. «Невозможен переход теплоты от тела с более низкой температурой без компенсации ».

В 1851 г. другую формулировку второго закона дал британский физик и механик Уильям Томсон, лорд Кельвин. Постулат Томсона (Кельвина) гласит: «Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара » . То есть, нельзя создать циклически работающий двигатель, в результате действия которого производилась бы положительная работа за счет его взаимодействия лишь с одним источником теплоты. Ведь если бы это было возможно, тепловой двигатель мог бы работать, используя, например, энергию Мирового океана и полностью превращая её в механическую работу. В результате этого происходило бы охлаждение океана за счёт уменьшения энергии. Но как только его температура оказалась бы ниже температуры окружающей среды, должен был бы происходить процесс самопроизвольной передачи тепла от более холодного тела к более горячему. А такой процесс невозможен. Следовательно, для работы теплового двигателя необходимо хотя бы два источника теплоты, имеющих разную температуру.

Вечный двигатель второго рода

В тепловых двигателях теплота превращается в полезную работу только при переходе от нагретого тела к холодному. Чтобы такой двигатель функционировал, в нём создаётся разность температур между теплоотдатчиком (нагревателем) и теплоприёмником (холодильником). Нагреватель передаёт теплоту рабочему телу (например, газу). Рабочее тело расширяется и совершает работу. При этом не вся теплота превращается в работу. Часть её передаётся холодильнику, а часть, например, просто уходит в атмосферу. Затем, чтобы вернуть параметры рабочего тела к первоначальным значениям и начать цикл сначала, рабочее тело требуется нагреть, то есть от холодильника необходимо отнять теплоту и передать её нагревателю. Это означает, что нужно передать теплоту от холодного тела к более тёплому. И если бы этот процесс можно было осуществить без подвода энергии извне, мы получили бы вечный двигатель второго рода. Но так как, согласно второму закону термодинамики, сделать это невозможно, то невозможно и создать вечный двигатель второго рода, который полностью превращал бы теплоту в работу.

Эквивалентные формулировки второго закона термодинамики:

  1. Невозможен процесс, единственным результатом которого является превращение в работу всего количества теплоты, полученного системой.
  2. Невозможно создать вечный двигатель второго рода .

Принцип Карно

Николя Леонар Сади Карно

Но если невозможно создать вечный двигатель, то можно организовать цикл работы теплового двигателя таким образом, чтобы КПД (коэффициент полезного действия) был максимальным.

В 1824 г., задолго до того как Клаузиус и Томсон сформулировали свои постулаты, давшие определения второго закона термодинамики, французский физик и математик Николя Леонар Сади Карно опубликовал свою работу «Размышления о движущей силе огня и о машинах, способных развивать эту силу». В термодинамике её считают основополагающей. Учёный сделал анализ существовавших в то время паровых машин, КПД которых был всего лишь 2%, и описáл работу идеальной тепловой машины.

В водяном двигателе вода совершает работу, падая с высоту вниз. По аналогии Карно предположил, что и теплота может совершать работу, переходя от горячего тела к более холодному. Это означает, что для того чтобы тепловая машина работала, в ней должно быть 2 источника тепла, имеющих разную температуру. Это утверждение называют принципом Карно . А цикл работы тепловой машины, созданной учёным, получил название цикла Карно .

Карно придумал идеальную тепловую машину, которая могла совершать максимально возможную работу за счёт подводимой к ней теплоты.

Тепловая машина, описанная Карно, состоит из нагревателя, имеющего температуру Т Н , рабочего тела и холодильника с температурой Т Х .

Цикл Карно является круговым обратимым процессом и включает в себя 4 стадии - 2 изотермические и 2 адиабатические.

Первая стадия А→Б изотермическая. Она проходит при одинаковой температуре нагревателя и рабочего тела Т Н . Во время контакта количество теплоты Q H передаётся от нагревателя рабочему телу (газу в цилиндре). Газ изотермически расширяется и совершает механическую работу.

Для того, чтобы процесс был циклическим (непрерывным), газ нужно вернуть к исходным параметрам.

На второй стадии цикла Б→В рабочее тело и нагреватель разъединяются. Газ продолжается расширяться адиабатически, не обмениваясь теплом с окружающей средой. При этом его температура снижается до температуры холодильника Т Х , и он продолжает совершать работу.

На третьей стадии В→Г рабочее тело, имея температуру Т Х , находится в контакте с холодильником. Под действием внешней силы оно изотермически сжимается и отдаёт теплоту величиной Q Х холодильнику. Над ним совершается работа.

На четвёртой стадии Г→А рабочее тело разъединятся с холодильником. Под действием внешней силы оно адиабатически сжимается. Над ним совершается работа. Его температура становится равной температуре нагревателя Т Н .

Рабочее тело возвращается в первоначальное состояние. Круговой процесс заканчивается. Начинается новый цикл.

Коэффициент полезного действия теловой машины, работающей по циклу Карно, равен:

КПД такой машины не зависит от её устройства. Он зависит только от разности температур нагревателя и холодильника. И если температура холодильника равна абсолютному нулю, то КПД будет равен 100%. До сих пор никто не смог придумать ничего лучшего.

К сожалению, на практике такую машину построить невозможно. Реальные обратимые термодинамические процессы могут лишь приближаться к идеальным с той или иной степенью точности. Кроме того, в реальной тепловой машине всегда будут тепловые потери. Поэтому её КПД будет ниже КПД идеального теплового двигателя, работающего по циклу Карно.

На основе цикла Карно построены различные технические устройства.

Если цикл Карно провести наоборот, то получится холодильная машина. Ведь рабочее тело сначала заберёт тепло от холодильника, затем превратит в тепло работу, затраченную на создание цикла, а потом отдаст это тепло нагревателю. По такому принципу работают холодильники.

Обратный цикл Карно лежит также в основе тепловых насосов. Такие насосы переносят энергию от источников с низкой температурой к потребителю с более высокой температурой. Но, в отличие от холодильника, в котором отбираемая теплота выбрасывается в окружающую среду, в тепловом насосе она передаётся потребителю.