К какому виду контроля относится дозиметрический контроль. Методы дозиметрического контроля, приборы и средства

§ 56. Для дозиметрического контроля профессионального внутреннего облучения используют:

Групповой дозиметрический контроль облучения (ГДК);

Индивидуальный дозиметрический контроль облучения (ИДК).

§ 57. Групповой дозиметрический контроль заключается в определении значения ОЭД персонала по результатам систематических измерений объемной активности в воздухе рабочих помещений (на рабочих местах) с учетом времени пребывания персонала в этом помещении (на рабочем месте). Значения ОЭД, которые могут быть получены с помощью ГДК, характеризуются значительной неопределенностью. Проведение ГДК является одним из элементов контроля радиационной обстановки на рабочих местах (в рабочих помещениях). Результаты ГДК используются:

Для планирования дозиметрического контроля внутреннего облучения персонала;

Для оценки индивидуальных доз облучения персонала.

§ 58. Значение ОЭД, полученное с помощью ГДК, может быть приписано индивиду в качестве значения индивидуальной ОЭД только в условиях нормальной эксплуатации ИИИ и если по имеющимся данным значение годовой дозы облучения на его рабочем месте не является или по прогнозу не может являться значимым, то есть не превышает уровень введения индивидуального дозиметрического контроля У ВК , установленный в Регламенте ДК предприятия.

§ 59. Индивидуальный дозиметрический контроль заключается в определении значения ОЭД внутреннего облучения персонала по результатам систематических индивидуальных измерений физических величин, характеризующих внутреннее облучение работника, с помощью инструментальных методов.

§ 60. Согласно § 53 и § 55 индивидуальные измерения физических величин, характеризующих внутреннее облучение работника, заключаются в определении активности радионуклидов:

Во всем теле человека либо о его отдельных органах;

В выделениях человека или других пробах биологического происхождения.

§ 61. Индивидуальный дозиметрический контроль используется:

Для определения доз облучения персонала группы А в условиях нормальной эксплуатации источника излучения, если по имеющимся данным значение годовой дозы облучения на рабочем месте является или по прогнозу может являться значимым, то есть превышает УВК;

Для определения доз облучения всех лиц, работающих с источниками облучения в условиях планируемого повышенного (потенциально опасного) облучения.

Рис. 1 . Организационная схема дозиметрического контроля персонала группы А .



§ 62. Содержание дозиметрического контроля профессионального внутреннего облучения заключается в проведении систематических измерений физических величин, характеризующих внутреннее облучение работника, и переходе от результатов измерений характеристик радиационной обстановки к индивидуальным значениям нормируемых величин, определенных с приемлемой неопределенностью. В дозиметрическом контроле вводятся два этапа (см. Рис. 1 и раздел 10 МУ 2.6.1.16-2000):

Этап группового дозиметрического контроля (ГДК), где применяется элементарная модель определения индивидуальной ОЭД;

Этап индивидуального дозиметрического контроля (ИДК), где применяются стандартная и специальная модели определения индивидуальной ОЭД.

§ 63. Расчет индивидуальной дозы при ГДК проводится согласно требованиям раздела 6.1. Элементарная модель определения индивидуальных доз заключается в расчете индивидуальных доз облучения для стандартных условий облучения по результатам контроля радиационной обстановки на рабочих местах. При расчетах используются значения величины объемной активности радионуклидов в воздухе на рабочем месте, Q U,G (см. раздел 5.1).

§ 64. Расчет индивидуальной дозы при ИДК проводится согласно разделу 6.2 на основании определения величины ингаляционного поступления. При ИДК используются стандартная и специальная модели определения индивидуальных доз:

1) Стандартная модель заключается в использовании стандартных условий облучения, определяемых в п. 8 НРБ-99 и МУ 2.6.1.16-2000, при интерпретации результатов систематических измерений физических величин согласно § 60. Использование стандартной модели является достаточным на первом этапе индивидуального контроля, который охватывает максимальное количество людей и ограничивается условием не превышения индивидуальной дозы соответствующего контрольного уровня (уровня действия - согласно п. 10.1 МУ 2.6.1.16-2000);



2) Специальная модель заключается в интерпретации результатов систематических измерений физических величин согласно § 60 и расчете индивидуальных доз облучения для реальных условий облучения (т. е. для реальных значений физико-химических характеристик аэрозолей при ингаляции). Специальная модель применяется на втором этапе индивидуального дозиметрического контроля с целью уточнения величины индивидуальной дозы для ограниченного числа людей.

§ 65. Непосредственно для целей планирования и организации ДК внутреннего облучения персонала в контролируемых условиях эксплуатации источника излучения устанавливается ряд дозовых уровней (см. Рис. 1):

Уровень введения индивидуального дозиметрического контроля (У ВК ) - такое значение годовой эффективной дозы или эквивалентной дозы облучения органа, при действительном или предполагаемом превышении которого определение соответствующих доз следует проводить с помощью индивидуального дозиметрического контроля облучения работника;

Уровень исследования (У И ) - такое значение дозы, полученной в течение периода контроля, при превышении которого следует провести исследование причин повышения дозы и при необходимости провести мероприятия по улучшению радиационной обстановки на рабочем месте;

Уровень действия (У Д ) - такое значение дозы, при действительном или предполагаемом превышении которого следует уточнить значение индивидуальной дозы с помощью специальной модели определения дозы и при необходимости провести мероприятия по улучшению радиационной обстановки на рабочем месте.

§ 66. В случае обнаружения систематического превышения значения У Д следует планировать проведение медицинского обследования в стационаре.

§ 67. Значения У ВК согласно МУ 2.6.1.16-2000 устанавливаются предприятием в диапазоне 1 - 5 мЗв и согласовываются с органами Госсанэпиднадзора при разработке Регламента ДК внутреннего облучения.

§ 68. Значения У И и У Д устанавливаются предприятием в зависимости от характера выполняемых работ и согласовываются с органами Госсанэпиднадзора. Указанные уровни должны приводиться в Регламентах ДК внутреннего облучения персонала.

§ 69. В нормальных условиях обращения с источником согласно требованиям раздела 6 МУ 2.6.1.16-2000:

Нецелесообразно устанавливать значения У ВК ниже 1 мЗв;

Решение об установлении значения У ВК выше 1 мЗв, но ниже 5 мЗв принимается по принципам обоснования и оптимизации с учетом конкретной обстановки;

Значения У ВК не следует устанавливать выше 5 мЗв.

Принятие решения о значении У ВК для организации дозиметрического контроля персонала предприятия должно учитывать следующие основные факторы:

Ожидаемый уровень облучения;

Наиболее вероятные изменения дозы облучения;

Сложность методов измерения и интерпретации, составляющих программу контроля.

§ 70. Перечень радионуклидов, поступление которых необходимо определять для целей планирования и проведения ДК профессионального облучения, определяется по результатам радиационного контроля радионуклидного состава аэрозолей на рабочих местах. При осуществлении измерений следует определять радионуклиды, годовые ОЭД которых превышают 20 % для гамма-излучателей и 50 % для альфа-излучателей значения уровня регистрации, установленного согласно § 8.3 МУ 2.6.1.16-2000. и для объемных активностей которых выполняется неравенство:

(6)

где: - среднегодовая объемная активность радионуклида U в рабочем помещении (на рабочем месте), Бк/м 3 ; ДОА U - минимальное из значений допустимой среднегодовой объемной активности радионуклида U , приведенных в Приложении П-1 к НРБ-99 для разных типов G его соединений. Определение среднегодовой объемной активности проводится на основании результатов контроля радиационной обстановки согласно отдельным МУ.

Дозиметрический контроль проводится с целью своевременного получения данных о дозах облучения личного состава ПСФ при действиях в зонах радиоактивного загрязнения. По полученным данным определяется режим работы ПСФ. Дозиметрический контроль подразделяется на групповой и индивидуальный.

Групповой контроль проводится с целью получения данных о средних дозах облучения для оценки и определения категории работоспособности личного состава ПСФ. Для этого формирование обеспечивается измерителями дозы излучения ИД-1 (дозиметрами ДКП-50-А из комплектов ДП-24, ДП-22В) из расчета 1-2 дозиметра на группу численностью 14-20 человек, действующих в одинаковых условиях радиационной обстановки.

Индивидуальный контроль проводится с целью получения данных о дозах каждого спасателя, которые необходимы для первичной диагностики степени тяжести радиационного поражения. Личному составу ПСФ в этих целях выдаются индивидуальные измерители мощности дозы ИД-11.

Характеристики приборов радиационной разведки и дозиметрического контроля

Наименование

Характеристики и диапазон измерений

Назначение

Полевой радиометр-рентгенометр ДП-5А (ДП-5Б, ДП-5В)

По гамма-излучению 50 мкР/ч - 200 Р/ч

Измерение мощности дозы гамма-излучения и наличия загрязненной местности по гамма-, бета-излучению

Дозиметр ДРГ-01Т

10 мкР/ч - 10 Р/ч

Измерение мощности экспозиционной дозы (МЭД) внешнего гамма-излучения

Комплект дозиметров ДП-22В

Измерение доз излучения

Комплект дозиметров ДП-24 (аналог ДП-22В)

Измерение доз излучения

Комплект измерителя дозы ИД-1

Измерение поглощенных доз гамма-нейтронного излучения

Индивидуальный измеритель дозы ИД-11 с измерительным устройством ИУ

10-1500 рад 50-800 Р

Индивидуальный контроль облучения с целью первичной диагностики радиационного поражения

Химические дозиметры ДП-70

(ДП-70М) выдаются дополнительно к ДКП-50-А

Измерение доз излучения для медицинской диагностики степени поражения

Комплект дозиметров ДК-0,2

Измерение мощности дозы гамма-излучения в лабораторных условиях

Определение радиоактивных частиц в потребительских товарах производят с помощью радиометра-дозиметра ДБГ-07Б «Эксперт».

Открытие радиоактивности относится к 1896 г., когда А.Беккерель обнаружил, что уран самопроизвольно испускает излучение, названное им радиактивным (от лат. Radio - излучаю и actiwas - действенный).

Радиоактивное излучение возникает при самопроизвольном распаде атомного ядра. Известно несколько типов радиоактивного распада и радиоактивного излучения.

Радиоактивность. Ядра атомов состоят из нуклонов, протонов и нейтронов. Число протонов в ядре равно атомному номеру Z данного элемента в периодической системе Д.И.Менделеева. Общее число протонов и нейтронов в ядре равно массовому числу А, соответственно число нейтронов N = А -- Z.

Совокупность атомов, ядра которых имеют одинаковые А и Z, называют изотопами.

Многие химические элементы имеют несколько изотопов, например, у водорода их три: 11Н, 21Н, 31H.

Первые два изотопа протий и дейтерий - стабильные, а третий - тритий - радиоактивный (нестабильный).

Изотопы, ядра которых пертерпевают самопроизвольные превращения, называют радиоактивными. Обычно эти превращения обладают двумя особенностями:

  • - для всех типов радиоактивных превращений справедлив один кинетический закон;
  • - количество типов радиоактивных превращений ограниченно. Различают следующие типы ядерных, т.е. радиоактивных превращений:

превращения, изомерный переход, нейтронный распад, протонный распад, спонтанное деление,

излучение,

излучение сопровождает многие из перечисленных типов превращений, а при изомерном переходе является единственным видом излучения.

Таблица 1

  • * - относительно нейтрона,
  • **- 1,60240* 10Кл.

для большого количества ядер число актов распада в единицу времени (скорость распада) пропорционально исходному количеству ядер N:

Выражение (12.1) представляет собой дифференциальную форму закона радиоактивного распада, где N - число радиоактивных атомов в момент времени t; л - константа, называемая постоянной распада или радиоактивной постоянной, с-1. Интегральная форма закона радиоактивного распада получается интегрированием уравнения (12.1) в пределах от t0 = 0 до tt:

Где Nt - число радиоактивных ядер в момент времени t=0;

N0 - количество радиоактивных ядер в момент времени t.

Закон радиоактивного распада носит статистический характер: чем больше распадающихся ядер, тем точнее он выполняется. Скорость радиоактивного распада - (dN/dt) называют абсолютной активностью - (а) образца:

at = - dN/dt = лN

Абсолютная активность выражается числом актов распада в секунду и подчиняется закону радиоактивного распада:

Наряду с л - радиоактивной постоянной, устойчивость радиоактивного изотопа можно охарактеризовать периодом полураспада. T1/2 - это промежуток времени, в течение которого происходит распад половины имеющихся в наличии радиоактивных ядер элемента. Абсолютная активность,а"за время Т1/2 уменьшается вдвое:

аТ1/2 / а0 = Ѕ = е -лТ1/2

л*Т1/2 = 1n2 = 0,693

Каждый радионуклид (химический элемент, подверженный радиоактивному распаду) имеет неизменный, присущий только ему, период полураспада, который может составлять от нескольких секунд до миллионов лет. Например, 238U распадается наполовину за 4470 млн лет, а 1381 - всего лишь за 8 сут.

Величины и единицы измерения радиоактивности

ПОГЛОЩЕННАЯ ДОЗА - единица измерения - 1Гр (грей). 1Гр=100рад.

ЭКВИВАЛЕНТНАЯ ДОЗА - это величина поглощенной дозы (в греях или радах), умноженная на переводной «коэффициент качества», отражающий эффективность воздействия конкретного вида радиации. Единица измерения -1 Зв (зиверт) в системе СИ; 1 бэр - внесистемная единица (биологический эквивалент рентгена), 100 бэр = 1 Зв.

МОЩНОСТЬ ЭКВИВАЛЕНТНОЙ ДОЗЫ - это приращение эквивалентной дозы за малый промежуток времени, деленное на этот промежуток времени. Единица измерения - 1 Эв/час - (в системе СИ), 1 бэр/час - (внесистемная единица). 1 Эв/час = 100 бэр/час.

ФЛЮЕНС - число частиц, проникающих в сферу малого сечения, деленное на это сечение. Единица измерения - 1см.

ПЛОТНОСТЬ ПОТОКА ЧАСТИЦ - флюенс частиц за малый промежуток времени, деленный на этот промежуток времени. Единица измерения - част/см*мин.

АКТИВНОСТЬ - это число распадов в секунду в радиоактивном образце. Единица измерения - 1Бк (беккерель). Внесистемная единица измерения - Кu (кюри).

УДЕЛЬНАЯ АКТИВНОСТЬ - это число распадов в секунду в радиоактивном образце на единицу массы образца. Единица измерения - 1 Бк/кг.

Равные дозы различных видов излучения не обязательно должны вызывать одинаковые биологические эффекты. Например, поглощенная доза нейтронного излучения 0,5Гр будет приводить к более тяжелым последствиям, чем такая же доза рентгеновского излучения. Обычно при одинаковой величине поглощенной дозы рентгеновские лучи, г- и электронное излучение вызывают наименьшие повреждения по сравнению с излучением тяжелых ионов. Нейтронное излучение занимает промежуточное положение.

б-распад характерен для атомов тяжелых элементов, б-частица представляет собой ядро атома гелия 42Не, поэтому при испускании б-частицы образуется ядро с зарядом Z на 2 единицы меньше и массой А на 4 единицы меньше, чем у исходного радиоактивного изотопа:

23892U = 23490Th + 42He (б-частица),

б-частицы радиоактивных элементов имеют большую энергию, достигающую 9 МэВ. Часто спектр б-частиц состоит из нескольких групп (зон), каждая из которых включает б-частицы определенной энергии. Наличие б-частиц различных энергий при распаде одного и того же изотопа указывает на то, что б-распад сопровождается г-излучением. б-частицы, образующиеся при распаде, вступают во взаимодействие с веществом среды. Это взаимодействие сопровождается рассеиванием энергии б-частиц и превращением их атомы гелия. При этом энергия расходуется главным образом на взаимодействие с электронами атомов и молекул среды, что приводит к их ионизации и возбуждению. Так, например, б-частица, имеющая энергию 3,4 МэВ, может образовать 105 пар ионов, на образование 1 пары ионов необходимо около 34 эВ. Проникающая способностью б-частиц мала. Они поглощаются листом писчей бумаги, тканью одежды. Средние пробеги в воздухе не превышают 10 см.

Дозиметрический контроль включает контроль облучения личного состава служб ЧС, радиоактивного и химического загрязнения людей, техники, материальных средств, продовольствия, воды и объектов внешней среды.

Задачи дозиметрического контроля определяются особенностями и масштабами практической деятельности и, в первую очередь, направлены на достижение следующих целей:

· подтверждения соответствия требованиям санитарного законодательства радиационно-гигиенических условий и выявление радиационной опасности;

· расчет текущих и прогнозируемых уровней облучения населения, а также техники, материальных средств, продовольствия, воды и объектов внешней среды

· обеспечение исходной информации для расчета доз и принятия решений в случае аварийного облучения, подтверждения качества и эффективности радиационной защиты людей

Данные дозиметрического контроля могут быть использованы также для:

· совершенствования применяемых и разработки новых технологии,

· предоставление населению информации, которая позволяет им понять как, где и когда они были облучены, что в свою очередь, поможет им в дальнейшем избегать дополнительного облучения,

· сопровождения обязательного медицинского обследования населения;

· эпидемиологического наблюдения за облученными контингентами

Принцип обнаружения ионизирующих (радиоактивных) излучений (нейтронов, гамма-лучей, бета - и альфа-частиц) основан на способности этих излучений ионизировать вещество среды, в которой они распространяются. Ионизация, в свою очередь, является причиной физических и химических изменений в веществе, которые могут быть обнаружены и измерены. К таким изменениям среды относятся: изменения электропроводности веществ (газов, жидкостей, твердых материалов); люминесценция (свечение) некоторых веществ; засвечивание фотопленок; изменение цвета, окраски, прозрачности, сопротивления электрическому току некоторых химических растворов и др.

Для обнаружения и измерения ионизирующих излучений используют следующие методы: фотографический, сцинтилляционный, химический и ионизационный.

Фотографический метод основан на степени почернения фотоэмульсии. Под воздействием ионизирующих излучений молекулы бромистого серебра, содержащегося в фотоэмульсии, распадаются на серебро и бром. При этом образуются мельчайшие кристаллики серебра, которые и вызывают почернение фотопленки при её проявлении. Плотность почернения пропорциональна поглощенной энергии излучения. Сравнивая плотность почернения с эталоном, определяют дозу излучения (экспозиционную или поглощенную), полученную пленкой. На этом принципе основаны индивидуальные фотодозиметры.

Сцинтилляционный метод . Некоторые вещества (сернистый цинк, йодистый натрий) под воздействием ионизирующих излучений светятся. Количество вспышек пропорционально мощности дозы излучения и регистрируется с помощью специальных приборов - фотоэлектронных умножителей.

Химический метод . Некоторые химические вещества под воздействием ионизирующих излучений меняют свою структуру. Так, хлороформ в воде при облучении разлагается с образованием соляной кислоты, которая дает цветную реакцию с красителем, добавленным к хлороформу. Двухвалентное железо в кислой среде окисляется в трехвалентное под воздействием свободных радикалов HO 2 и ОН, образующихся в воде при её облучении. Трехвалентное железо с красителем дает цветную реакцию. По плотности окраски судят о дозе излучения (поглощенной энергии). На этом принципе основаны химические дозиметры ДП-70 и ДП-70М.

В современных дозиметрических приборах широкое распространение получил ионизационный метод обнаружения и измерения ионизирующих излучений.

Ионизационный метод. Под воздействием излучений в изолированном объеме происходит ионизация газа: электрически нейтральные атомы (молекулы) газа разделяются на положительные и отрицательные ионы. Если в этот объем поместить два электрода, к которым приложено постоянное напряжение, то между электродами создается электрическое поле. При наличии электрического поля в ионизированном газе возникает направленное движение заряженных частиц, т.е. через газ проходит электрический ток, называемый ионизационном. Измеряя ионизационный ток, можно судить об интенсивности ионизирующих излучений.

Газоразрядный счетчик используется для измерения радиоактивных излучений малой интенсивности. Высокая чувствительность счетчика позволяет измерять интенсивность излучения в десятки тысяч раз меньше той, которую удается измерить ионизационной камерой.

Газоразрядный счетчик представляет собой полый герметичный металлический или стеклянный цилиндр, заполненный разряженной смесью инертных газов (аргон, неон) с некоторыми добавками, улучшающими работу счетчика (пары спирта). Внутри цилиндра, вдоль его оси, натянута тонкая металлическая нить (анод), изолированная от цилиндра. Катодом служит металлический корпус или тонкий слой металла, нанесенный на внутреннюю поверхность стеклянного корпуса счетчика. К металлической нити и токопроводящему слою (катоду) подают напряжение электрического тока.

В газоразрядных счетчиках используют принцип усиления газового разряда. В отсутствие радиоактивного излучения свободных ионов в объеме счетчика нет. Следовательно, в цепи счетчика электрического тока также нет. При воздействии радиоактивных излучений в рабочем объеме счетчика образуются заряженные частицы. Электроны, двигаясь в электрическом поле к аноду счетчика, площадь которого значительно меньше площади катода, приобретают кинетическую энергию, достаточную для дополнительной ионизации атомов газовой среды. Выбитые при этом электроны также производят ионизацию. Таким образом, одна частица радиоактивного излучения, попавшая в объем смеси газового счетчика, вызывает образование лавины свободных электронов. На нити счетчика собирается большое количество электронов. В результате этого положительный потенциал резко уменьшается и возникает электрический импульс. Регистрируя количество импульсов тока, возникающих в единицу времени, можно судить об интенсивности радиоактивных излучений.

БАКТЕРИОЛОГИЧЕСКОГО КОНТРОЛЯ

ОРГАНИЗАЦИЯ ДОЗИМЕТРИЧЕСКОГО, ХИМИЧЕСКОГО И

Под радиационной обстановкой понимают масштабы и степень радиоактивного заражения местности, оказывающие влияние на действия формирований, работу объектов экономики, в т.ч. – объектов здравоохранения. Цель оценки радиационной обстановки – определение возможного влияния ее на трудоспособность населения.

Оценить радиационную обстановку значить проанализировать различные действия формирований в условиях радиоактивного заражения и выбрать наиболее целесообразные варианты действий, исключающих радиоактивное поражение населения (рассчитать ожидаемые дозы облучения, продолжительность пребывания в зонах заражения, время входа формирований в зоны заражения и т.д.).

Радиационная обстановка может быть выявлена и оценена как по результатам прогнозирования последствий применения ядерного оружия, так и по данным радиационной разведки.

Оценка методом прогнозирования дает лишь ориентировочные данные, которые могут существенно отличаться от фактических, так как прогнозирование осуществляется после применения ядерного оружия, но до выпадения радиоактивных осадков. При прогнозировании можно с достаточной точностью установить направление и скорость движения радиоактивного облака, а следовательно и время начала выпадения осадков. Это позволяет заблаговременно организовать ряд мероприятий по защите населения.

При прогнозировании определяется 4 зоны возможного заражения: зона умеренного заражения (зона А, обозначаемая на карте синим цветом); зона сильного заражения (зона Б, обозначаемая зеленым цветом); зона опасного заражения (зона В, обозначаемая коричневым цветом) и зона чрезвычайно опасного заражения (зона Г, обозначаемая черным цветом).

При оценке радиационной обстановки методом прогнозирования не определяется точное положение радиоактивного следа на местности, а только предсказывается район, в пределах которого возможно его образование; при этом площадь заражения составляет примерно 1/3 площади указанного следа.

Фактическая радиационная обстановка складывается на территории конкретного района, населенного пункта или объекта экономики и требует принятия мер защиты населения и объектов экономики.

Выявление фактической радиационной обстановки осуществляется по данным радиационной разведки. Радиационная разведка производится в целях своевременного обеспечения начальника гражданской обороны информацией о радиоактивном заражении. Измерение мощности дозы на местности являются исходными данными для оценки радиационной обстановки. Разведка ведется непрерывно постами радиационного и химического наблюдения и специально подготовленными группами (звеньями) радиационной и химической разведки. Главной их задачей является своевременное обнаружение радиоактивного или химического заражения и оповещения об опасности населения и личного состава нештатных аварийно-спасательных формирований гражданской обороны.



Основными приборами для обнаружения ионизирующего излучения являются измерители мощности дозы (ретнгенометры-радиометры), а дозиметрического контроля – дозиметры: ДП-5, ДП-22В, ДП-24, ИД-1, ИД-11, ДП-70, ДП-3Б.

Для оперативного принятия решений об объеме мероприятий по противорадиационной защите населения и личного состава нештатных аварийно-спасательных формирований гражданской обороны достаточно получить данные об уровне гамма-излучения (именно оно дает максимальный уровень радиации в период выпадения радиоактивных осадков, или же в любые другие определенные моменты времени после ядерного взрыва) на зараженной местности спустя определенное время после ядерного взрыва или аварии на радиационно опасном объекте.

Обнаружить местное выпадение радиоактивных осадков можно с помощью приборов для радиационной разведки (рентгенометр-радиометр ДП-5А, Б или В). Радиационная разведка проводится методом поста или методом дозора формированиями медицинской службы ГО с целями своевременно установить факт радиационного загрязнения местности и определить уровень радиации, доложить о фактах радиационного загрязнения и подать сигнал оповещения, оградить радиационно загрязненную территорию, установить безопасные маршруты передвижения и пути объезда, а также для осуществления контроля за изменением уровня радиации на местности.

При разведке методом поста радиационное наблюдение производят путем периодического (через 20-30 мин.) включения рентгенометра-радиометра ДП-5А (Б,В).

Дозиметрический контроль организуется с целью предотвращения облучения населения в поражающих дозах, оценки трудоспособности населения, подвергшегося радиационному облучению, определения дозы облучения пораженных для установления степени тяжести лучевой болезни, определение степени загрязнения радиоактивными веществами продуктов и воды.

Организация контроля заключается в следующем:

– обеспечение личного состава нештатных аварийно-спасательных формирований гражданской обороны и населения дозиметрами (ИД-1, ИД-11 и т.д.);

– снятие показаний в лечебных учреждениях осуществляется фельдшером (медсестрой) при проведении медицинской сортировки до осмотра врачом;

– дозы облучения фиксируются в историях болезни и заверяются подписью врача;

– регистрация доз облучения производится при выписке из лечебного учреждения в «карточках доз облучения»;

– предоставление сведений о дозах облучения личного состава нештатных аварийно-спасательных формирований гражданской обороны и населения в вышестоящий штаб ГО.

Средние значения коэффициентов ослабления мощности дозы ионизирующего излучения укрытиями и транспортными средствами

Значение приведенного коэффициента ослабления гамма-излучения жилыми домами приведены для сельской местности. В городах этот показатель выше на 20-40%.

Чтобы предотвратить переоблучение работающих, необходим тщательный дозиметрический контроль, позволяющий своевременно выявить и устранить источники излучения, загрязнения воздуха, оборудования, помещений, спецодежды и рук радиоактивными веществами.


Эта работа проводится специальной дозиметрической службой или специально выделенным лицом.


При проведении оперативного дозиметрического контроля согласно НРБ-76/87 следует руководствоваться допустимыми и контрольными уровнями. Объем контроля устанавливается в зависимости от радиационной обстановки и может включать контроль за следующими параметрами: мощность дозы в-, у-, п- и других излучений; содержание газов и аэрозолей в воздухе и радионуклидов в жидких отходах; выброс радионуклидов в атмосферу; уровень загрязнения радионуклидами поверхностей, кожных покровов и одежды, объектов внешней среды, транспортных средств; индивидуальная доза внешнего и внутреннего облучения.


Дозиметрические приборы в помещениях оборудуются световой и звуковой сигнализацией, предупреждающей персонал о повышении уровня излучения. При необходимости предусматривается сигнализация трех уровней: нормального, предварительного, аварийного.


Ионизирующие излучения измеряются и обнаруживаются по тем специфическим физическим процессам, которые происходят при взаимодействии этих излучений с веществами (ионизация, возбуждение атомов и т.д.). Во всех случаях регистрируются ионизация или обусловленные ею вторичные эффекты.


В настоящее время разработано большое число различных приборов дозиметрического контроля, в основу которых положены следующие методы: ионизационный, основанный на способности излучения ионизировать воздух, сцинтилляционный, основанный на способности некоторых кристаллов испускать вспышки видимого света при поглощении энергии ионизирующих излучений; фотографический, основанный на способности фотографической эмульсии чернеть при воздействии на нее ионизирующего излучения.


Большинство выпускаемых дозиметрических (регистрирующих суммарную ионизацию) и радиометрических (определяющих количество радионуклидов по интенсивности испускаемых ионизирующих излучений) приборов не являются универсальными и могут использоваться в сравнительно небольшом диапазоне энергий.


В данной области не существует универсальных методов и приборов, применяемых в любых, каких угодно условиях. Каждый метод и прибор имеет свою область применения. Использование его за пределами этой области может привести к грубым ошибкам.


Только специальные знания позволяют на основании показаний измерительного прибора (дозиметра, радиометра, спектрометра) получить правильное численное значение измеряемой величины.


Например, в случае радиометра по скорости счета - активность пробы или потока ионизирующего излучения, в случае фотодозиметра по почернению пленки - экспозиционную или поглощенную дозу, в случае спектрометра по числам отсчетов в каналах анализатора - спектр измеряемого излучателя.


Кроме того, всю аппаратуру радиационного контроля можно подразделить на приборы стационарные и переносные.